We report the through-plane thermal conductivities of the several widely used carbon porous transport layers (PTLs) and their thermal contact resistance to an aluminum polarization plate. We report these values both for wet and dry samples and at different compaction pressures. We show that depending on the type of PTL and the existence of residual water, the thermal conductivity of the materials varies from 0.15WK1m1 to 1.6WK1m1, one order of magnitude. This behavior is the same for the contact resistance varying from 0.8m2KW1 to 11×104m2KW1. For dry PTLs, the thermal conductivity decreases with increasing polytetrafluorethylene (PTFE) content and increases with residual water. These effects are explained by the behavior of air, water, and PTFE in between the PTL fibers. It is also found that Toray papers of differing thickness exhibit different thermal conductivities.

1.
Kjelstrup
,
S.
, and
Røsjorde
,
A.
, 2005, “
Local and Total Entropy Production and Heat and Water Fluxes in a One-Dimensional Polymer Electrolyte Fuel Cell
,”
J. Phys. Chem. B
1089-5647,
109
, pp.
9020
9033
.
2.
Bapat
,
C. J.
, and
Thynell
,
S. T.
, 2007, “
Anisotropic Heat Conduction Effects in Proton-Exchange Membrane Fuel Cells
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1109
1118
.
3.
Pharoah
,
J. G.
, and
Burheim
,
O.
, 2010, “
On the Temperature Distribution in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
195
, pp.
5235
5245
.
4.
Vie
,
P. J. S.
, and
Kjelstrup
,
S.
, 2004, “
Thermal Conductivities From Temperature Profiles in the Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
0013-4686,
49
, pp.
1069
1077
.
5.
He
,
S.
,
Mench
,
M. M.
, and
Tadigadapa
,
S.
, 2006, “
Thin Film Temperature Sensor for Real-Time Measurement of Electrolyte Temperature in a Polymer Electrolyte Fuel Cell
,”
Sens. Actuators, A
0924-4247,
125
, pp.
170
177
.
6.
Pharoah
,
J. G.
,
Karan
,
K.
, and
Sun
,
W.
, 2006, “
On Effective Transport Coefficients in PEM Fuel Cell Electrodes: Anisotropy of the Porous Transport Layers
,”
J. Power Sources
0378-7753,
161
, pp.
214
224
.
7.
Danes
,
F.
, and
Bardon
,
J. -P.
, 1997, “
Conductivité thermique des feutres de carbone, isolants à forte anisotropie: Modèle de conduction par la phase solide (Thermal Conductivity of the Carbon Felts, Strongly Anisotropic Insulants: Modelling of Heat Conduction by Solid Phase
,”
Rev. Gen. Therm.
0035-3159,
36
, pp.
302
311
.
8.
Sadeghi
,
E.
,
Bahrami
,
M.
, and
Djilali
,
N.
, 2008, “
Analytic Determination of the Effective Thermal Conductivity of PEM Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
179
, pp.
200
208
.
9.
Burheim
,
O.
,
Vie
,
P. J. S.
,
Pharoah
,
J. G.
, and
Kjelstrup
,
S.
, 2010, “
Ex Situ Measurements of Through-Plane Thermal Conductivities in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
195
, pp.
249
256
.
10.
Ramousse
,
J.
,
Didjierjean
,
S.
,
Lottin
,
O.
, and
Maillet
,
D.
, 2008, “
Estimation of the Effective Thermal Conductivity of Carbon Felts Used as PEMFC Gas Diffusion Layers
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
1
6
.
11.
Ihonen
,
J.
,
Mikkola
,
M.
, and
Lindhberg
,
G.
, 2004, “
Flooding of Gas Diffusion Backing in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A1152
A1161
.
12.
Khandelwal
,
M.
, and
Mench
,
M. M.
, 2006, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
0378-7753,
161
, pp.
1106
1115
.
13.
Harvey
,
D.
,
Pharoah
,
J. G.
, and
Karan
,
K.
, 2008, “
A Comparison of Different Approaches to Modelling the PEMFC Catalyst Layer
,”
J. Power Sources
0378-7753,
179
, pp.
209
219
.
14.
Reum
,
M.
,
Freunberger
,
S. A.
,
Wokaun
,
A.
, and
Büchi
,
F. N.
, 2009, “
Measuring the Current Distribution With Sub-Millimeter Resolution in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
156
, pp.
B301
B310
.
15.
Burheim
,
O.
,
Vie
,
P. J. S.
,
Møller-Holst
,
S.
,
Pharoah
,
J.
, and
Kjelstrup
,
S.
, 2010, “
A Calorimetric Analysis of a Polymer Electrolyte Fuel Cell and the Production of H2O2 at the Cathode
,”
Electrochim. Acta
0013-4686,
55
, pp.
935
942
.
16.
Lampinen
,
M. J.
, and
Fomino
,
M.
, 1993, “
Analysis of Free Energy and Entropy Changes for Half-Cell Reactions
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
3537
3546
.
17.
Fishman
,
Z.
,
Hinebaugh
,
J.
, and
Bazylak
,
A.
, 2010, “
Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs
,”
J. Electrochem. Soc.
0013-4651,
157
(
11
), pp.
B1643
B1650
.
18.
Toray Carbon Fibre Paper
, TGP-H, material specification sheet, 22.02.2010, http://fuelcellstore.com/products/toray/specs.pdfhttp://fuelcellstore.com/products/toray/specs.pdf
19.
Mathias
,
M.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003,
Fuel Cell Technology and Applications
(
Handbook of Fuel Cells: Fundamentals, Technology and Application
), Vol.
3
,
W.
Vielstich
,
H. A.
Gasteiger
, and
A.
Lamm
,
Wiley
,
New York
.
20.
Zhang
,
J.
,
Kramer
,
D.
,
Shimoi
,
R.
,
Ono
,
Y.
,
Lehman
,
E.
,
Wokaun
,
A.
,
Shinohara
,
K.
, and
Scherer
,
G. G.
, 2006, “
In Situ Diagnostic of Two-Phase Flow Phenomena in Polymer Electrolyte Fuel Cells by Neutron Imaging: Part B. Material Variations
,”
Electrochim. Acta
0013-4686,
51
, pp.
2715
2727
.
21.
Turhan
,
A.
,
Heller
,
K.
,
Brenizer
,
J. S.
, and
Mench
,
M. M.
, 2008, “
Passive Control of Liquid Water Storage and Distribution in a PEFC Through Flow-Field Design
,”
J. Power Sources
0378-7753,
180
, pp.
773
783
.
22.
Boillat
,
P.
,
Kramer
,
D.
,
Seyfang
,
B. C.
,
Frey
,
G.
,
Lehmann
,
E.
,
Scherer
,
G. G.
,
Wokaun
,
A.
,
Ichikawa
,
Y.
,
Tasaki
,
Y
, and
Shinora
,
K.
, 2008, “
In situ Observation of the Water Distribution Across a PEFC Using High Resolution Neutron Radiography
,”
Electrochem. Commun.
1388-2481,
10
, pp.
546
550
.
23.
Litster
,
S.
,
Sinton
,
D.
, and
Djilali
,
N.
, 2006, “
Ex Situ Visualization of Liquid Water Transport in PEM Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
154
, pp.
95
105
.
You do not currently have access to this content.