Factors affecting the formation of carbon film by plasma-assisted chemical vapor deposition on stainless steels were investigated in detail. When the carbon coating time increased, the morphology and crystallinity of the formed carbon changed. The depth profile of the resulting carbon coated sample indicated that it was consisted of top carbon layer without metal species and interfacial layer mainly containing chromium oxide and carbon of lower crystallinity. The top carbon layer with the morphology similar to that of carbon nanowall effectively covered the surface of the metal substrate, providing the high electrochemical stability in an acidic solution. As the cold working rate of the stainless steel substrate increases, the time needed for the complete coverage of the metal surface became shorter. Based on the scanning electron microscopy observation and X-ray diffraction, this was mainly ascribed to the increase in defects where the nucleus formation of carbon can occur and the increased density of carbon on the surface of the metal. The resulting carbon coated stainless steels showed low interfacial resistance and high corrosion resistance in acidic solution even at 80°C, and is promising for the bipolar plate of polymer electrolyte fuel cells.

1.
Fukutsuka
,
T.
,
Yamaguchi
,
T.
,
Matsuo
,
Y.
,
Sugie
,
Y.
, and
Ogumi
,
Z.
, 2007, “
Preparation of Carbon-Coated Fe-Based Metal for Bipolar Plates of PEFC
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
75
, pp.
152
154
.
2.
Fukutsuka
,
T.
,
Yamaguchi
,
T.
,
Miyano
,
S. -I.
,
Matsuo
,
Y.
,
Sugie
,
Y.
, and
Ogumi
,
Z.
, 2007, “
Carbon-Coated Stainless Steel as PEFC Bipolar Plate Material
,”
J. Power Sources
0378-7753,
174
, pp.
199
205
.
3.
Show
,
Y.
, 2007, “
Electrically Conductive Amorphous Carbon Coating on Metal Bipolar Plates for PEFC
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
1252
1255
.
4.
Yin
,
D.
,
Itoh
,
T.
,
Toki
,
K.
,
Kasuya
,
A.
,
Yamada
,
M.
, and
Uchida
,
T.
, 2007, “
Electrochemical Investigations of Al-Carbon Hybrid Bipolar Plate Materials for Polymer Electrolyte Fuel Cells
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
75
, pp.
187
189
.
5.
Chung
,
C. -Y.
,
Chen
,
S. -K.
,
Chiu
,
P. -J.
,
Chang
,
M. -H.
,
Hung
,
T. -T.
, and
Ko
,
T. -H.
, 2008, “
Carbon Film-Coated 304 Stainless Steel as PEMFC Bipolar Plate
,”
J. Power Sources
0378-7753,
176
, pp.
276
281
.
6.
Chung
,
C. -Y.
,
Chen
,
S. -K.
,
Chin
,
T. -S.
,
Ko
,
T. -H.
,
Lin
,
S. -W.
,
Chang
,
W. -M.
, and
Hsiao
,
S. -N.
, 2009, “
Catalyst Layer-Free Carbon-Coated Steel—An Easy Route to Bipolar Plates of Polymer Electrolyte Membrane Fuel Cells: Characterization on Structure and Electrochemistry
,”
J. Power Sources
0378-7753,
186
, pp.
393
398
.
7.
Feng
,
K.
,
Shen
,
Y.
,
Sun
,
H.
,
Liu
,
D.
,
An
,
Q.
,
Cai
,
X.
, and
Chu
,
P. K.
, 2009, “
Conductive Amorphous Carbon-Coated 316L Stainless Steel as Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
6771
6777
.
8.
Abe
,
T.
,
Fukutsuka
,
T.
,
Inaba
,
M.
, and
Ogumi
,
Z.
, 1999, “
Synthesis of sp2-Type Carbonaceous Thin Films by Glow Discharge Plasma
,”
Carbon
0008-6223,
37
, pp.
1165
1168
.
9.
Fukutsuka
,
T.
,
Abe
,
T.
,
Inaba
,
M.
, and
Ogumi
,
Z.
, 2001, “
Electrochemical Properties of Carbonaceous Thin Films Prepared by Plasma CVD
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A1260
A1265
.
10.
Wang
,
H.
,
Brady
,
M. P.
,
More
,
K. L.
,
Meyer
,
H. M.
, III
, and
Tuner
,
J. A.
, 2004, “
Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 2: Beneficial Modification of Passive Layer on AISI446
,”
J. Power Sources
0378-7753,
138
, pp.
79
85
.
11.
Sone
,
Y.
,
Kishida
,
H.
,
Kobayashi
,
M.
, and
Watanabe
,
T.
, 2000, “
A Study of Carbon Deposition on Fuel Cell Power Plants—Morphology of Deposited Carbon and Catalytic Metal in Carbon Deposition Reactions on Stainless Steel
,”
J. Power Sources
0378-7753,
86
, pp.
334
339
.
12.
Wu
,
Y.
,
Qiao
,
P.
,
Chong
,
T.
, and
Shen
,
Z.
, 2002, “
Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition
,”
Adv. Mater.
0935-9648,
14
, pp.
64
67
.
13.
Kurita
,
S.
,
Yoshimura
,
A.
,
Kawamoto
,
H.
,
Uchida
,
T.
,
Kojima
,
K.
,
Tachibana
,
T.
,
Molina-Morales
,
P.
, and
Nakai
,
H.
, 2005, “
Raman Spectra of Carbon Nanowalls Grown by Plasma-Enhanced Chemical Vapor Deposition
,”
J. Appl. Phys.
0021-8979,
97
, p.
104320
.
14.
Otani
,
S.
,
Oya
,
A.
, and
Akagami
,
J.
, 1975, “
The Effects of Nickel on Structural Development in Carbons
,”
Carbon
0008-6223,
13
, pp.
353
356
.
15.
Oyama
,
A.
,
Otani
,
S.
, and
Akagi
,
J.
, 1979, “
Catalytic Graphitization of Carbons by Various Metals
,”
Carbon
0008-6223,
17
, pp.
131
137
.
16.
Mangonon
,
P. L.
, and
Thomas
,
G.
, 1970, “
Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel
,”
Metall. Mater. Trans. B
1073-5615,
1
, pp.
1587
1594
.
17.
Angle
,
T.
, 1954, “
Formation of Martensite in Austenitic Stainless Steels
,”
J. Iron Steel Inst., London
0021-1567,
177
, pp.
165
174
.
18.
Mangonon
,
P. L.
, Jr.
, and
Thomas
,
G.
, 1970, “
The Martensite Phases in 304 Stainless Steel
,”
Metall. Mater. Trans. B
1073-5615,
1
, pp.
1577
1586
.
19.
Lecroisey
,
F.
, and
Pineau
,
A.
, 1972, “
Martensitic Transformations Induced by Plastic Deformation in the Fe–Ni–Cr–C System
,”
Metall. Mater. Trans. B
1073-5615,
3
, pp.
391
400
.
You do not currently have access to this content.