A number of models for thermomechanical stress analysis and fatigue failure of materials are reviewed and their capabilities and limitations are identified. The unified disturbed state concept (DSC) for constitutive modeling of materials and interfaces is presented and compared with other approaches. An approximate procedure based on the DSC is proposed for accelerated design-analysis and cyclic fatigue failure. Solutions of example problems using the DSC and associated computer (FE) procedures are included to illustrate its integrated and improved capabilities for analysis of stresses, strains, microcracking, fracture and fatigue failure, and reliability.

1.
Tummala, R. R., and Rymaszewski, E. J., eds., 1989, Microelectronic Packaging Handbook, Van Nostrand Reinhold, NY.
2.
Knecht
,
S.
, and
Fox
,
L. R.
,
1990
, “
Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Load Solder
,”
IEEE Trans., CHMT
,
13
, No.
2
, pp.
424
433
.
3.
Ikegami
,
K.
,
1990
, “
Mechanical Problems in Production Process of Semiconductor Devices
,”
JSME International Journal
,
33
, pp.
1
12
.
4.
Ishikawa, H., and Sasaki, K., 1992, “Constitutive Model for 60 Sn—40 Pb Solder Under Cyclic Loading,” Adv. in Elect. Packaging. Proc. Joint ASME/JSME Conf. in Elect. Packaging, W. T. Chen, and H. Abe, eds., Vol. 1, pp. 401–408.
5.
Darveaux
,
R.
, and
Banerji
,
K.
,
1992
, “
Constitutive Relations for Tin Based Solder Joints
,”
IEEE Trans. On CHMT
,
15
, No.
6
, pp.
1013
1024
.
6.
Frear, D. R., Morgan, H., Burchett, S., and Lau, J., 1994, The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, NY.
7.
Desai, C. S., 1995, “Constitutive Modeling Using the Disturbed State as Micro-Structure Self-Adjustment Concept,” Chap. 8 in Continuum Models for Materials with Microstructure, H. B. Mu¨hlhaus, ed., Wiley, U.K.
8.
Desai, C. S., 2001, Mechanics of Materials and Interfaces: The Disturbed State Concept, CRC Press, Boca Raton, FL.
9.
Lau, J. H., 1995, Ball Grid Array Technology, McGraw-Hill, NY.
10.
Solomon, H. D., 1994, “Life Prediction and Accelerated Testing,” Chap. 6 in The Mechanics of Solder Alloy, D. Frear, et al., eds., Van Nostrand Reinhold, NY, pp. 198–313.
11.
Suhir
,
E.
,
1989
, “
Analytical Modeling in Electronic Packaging Structures: Its Merits, Shortcomings and Interaction with Experimental and Numerical Techniques
,”
ASME J. Electron. Packag.
,
111
, pp.
157
161
.
12.
Desai, C. S., 1997, “Disturbed State Unified Constitutive Modelling for Thermomechanical Behavior and Computer Analysis of Chip-Substrate Systems,” Proc., Interpak 1997, Advances in Electronic Packaging, E. Suhir, M. Shiratori, G. C. Lee, and G. Subharayan, eds., ASME, New York, Vol. 2, pp. 1605–1611.
13.
Chia, J., and Chia, H., 1997, “Implementation of Disturbance Function to Determine Thermal Fatigue Life of Solder Joints in QFP Packages,” Proc., Interpak 1997, Advances in Electronic Packaging, E. Suhir, M. Shiratori, G. C. Lee, and G. Subharayan, eds., ASME, New York, Vol. 2, pp. 1479–1485.
14.
Desai
,
C. S.
,
Somasundaram
,
S.
, and
Frantziskonis
,
G.
,
1986
, “
A Hierarchical Approach for Constitutive Modeling of Geologic Materials
,”
Int. J. Num. Analyt. Methods in Geomech.
,
10
, pp.
225
257
.
15.
Desai
,
C. S.
, and
Toth
,
J.
,
1996
, “
Disturbed State Constitutive Modeling Based on Stress-Strain and Nondestructive Behavior
,”
Int. J. Solids Struct.
,
33
, No.
11
, pp.
1619
1650
.
16.
Desai
,
C. S.
,
1997
, “
Integrated Procedure for Microcrack Initiation and Growth and Fracture Using the Disturbed State Concept, Report, Dept. of Civil Eng. and Eng. Mechs., The Univ. of Arizona, Tucson, AZ.
17.
Guo
,
Q.
,
Cutiongco
,
E. C.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
1992
, “
Thermomechanical Fatigue Life Prediction of 63 Sn/37 PB Solder
,”
ASME J. Electron. Packag.
,
114
, pp.
145
151
.
18.
Coffin, L. F., Jr., 1969, “Predictive Parameters and Their Application to High Temperature, Low-Cycle Fatigue,” Proc., Second Int. Conf. on Fracture, Chapman and Hall, London, pp. 643–654.
19.
Manson, S. S., 1966, Thermal Stress and Low Cycle Fatigue, McGraw-Hill, NY.
20.
Norris, K. C., and Landzberg, A. H., 1969, “Reliability of Controlled Collapse Interconnections,” IBM J. Res. Dev., May, pp. 266–271.
21.
Engelmaier, W., 1984, “Functional Cycles and Surface Mounting Attachment Reliability,” Surf. Mount. Technol., Int. Soc. of Hybrid Microelectronics, Monogram Series 6984-002, Silver Springs, MD, p. 87.
22.
Ostergren
,
W. J.
,
1976
, “
A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature, Low Cycle Fatigue
,”
J. Test. Eval.
,
4
, No.
5
, pp.
327
339
.
23.
Charles
,
H. K.
, Jr.
, and
Clatterbaugh
,
G. V.
,
1990
, “
Solder Joint Reliability—Design Implications from Finite Element Modeling and Experimental Testing
,”
ASME J. Electron. Packag.
,
112
, pp.
135
146
.
24.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.
25.
Dowling, N. E., and Begley, J. A., 1976, “Fatigue Crack Growth During Gross Plasticity and the J-Integral Mechanics of Crack Growth, Cracks and Fracture,” ASTM STP 590, pp. 82–103.
26.
Guo, Z., Sprecher, A. F., and Conrad, H., 1992, “Effect on Sn Content on Crack Growth Rate in Low-Cycle Fatigue of Pb-Sn Solder Joints,” Proc., 7th Electronic Materials and Processing Congress, Cambridge, MA, pp. 209–216.
27.
Lau, J. H., 1993, “Thermal Fatigue Life Prediction of Flip Chip Solder Joints by Fracture Mechanics Method,” Int. J. Eng. Fracture Mechanics, pp. 643–654.
28.
Frear
,
D. R.
, and
Vianco
,
P. T.
,
1994
, “
Intermetallic Growth and Mechanical Behavior of Low and High Melting Temperature Solder Alloys
,”
Metall. Mater. Trans. A
,
25A
, pp.
1509
1523
.
29.
Ju
,
S. H.
,
Sandor
,
B. I.
, and
Plesha
,
M. E.
,
1996
, “
Life Prediction of Solder Joints by Damage and Fracture Mechanics
,”
ASME J. Electron. Packag.
,
118
, pp.
193
200
.
30.
Kachanov, L. M., 1986, Introduction to Continuum Damage Mechanics, Martinus Nijhuft Publ., Dordrecht, The Netherlands.
31.
Murakami
,
S.
,
1983
, “
Notes on Continuum Damage Mechanics and Its Application to Anisotropic Creep Damage Theory
,”
ASME J. Eng. Mater. Technol.
,
105
, pp.
95
105
.
32.
Perzyna
,
P.
,
1966
, “
Fundamental Problems in Viscoplasticity
,”
Adv. Appl. Mech.
,
9
, pp.
243
377
.
33.
Subramanyan
,
R.
,
Wilcox
,
J. R.
, and
Li
,
C.
,
1989
, “
A Damage Integral Approach to Thermal Fatigue of Solder Joints
,”
Trans. IEEE Comp., Hyb. And Plant Tech.
,
12
, No.
4
, pp.
480
491
.
34.
Ellyin
,
F.
, and
Golos
,
K.
,
1988
, “
Multiaxial Fatigue Damage Criterion
,”
ASME J. Eng. Mater. Technol.
,
110
, pp.
63
68
.
35.
Heiduschke
,
K.
,
1998
, “
Solder Joint Lifetime Assessment of Electronic Devices
,”
Int. J. Numer. Methods Eng.
,
41
, pp.
211
231
.
36.
Maciucescu, L., Sham, T. L., and Krempl, E., 1998, “VBO: A State Variable Constitutive Equation for a Solder Alloy,” ASME J. Electron. Packag., in press.
37.
Fong, J. T., 1975, “Energy Approach for Creep-Fatigue Interactions in Metals at High Temperatures,” ASME J. Pressure Vessel Technol., pp. 214–222.
38.
Garud
,
Y. S.
,
1981
, “
A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings
,”
Trans. ASME
,
103
, pp.
118
125
.
39.
Dasgupta
,
A.
,
Oyan
,
C.
,
Barker
,
D.
, and
Pecht
,
M.
,
1992
, “
Solder Creep-Fatigue Analysis by an Energy-Partitioning Approach
,”
ASME J. Electron. Packag.
,
114
, p.
152
152
.
40.
Sarihan, V., 1993, “Energy-based Methodology for Damage and Life Prediction of Solder Joints Under Thermal Cycling,” Proc., IEEE, 43rd ECTC Conference.
41.
Zubelewicz
,
A.
, and
Keer
,
L. M.
,
1989
, “
Micromechanically Based Constitutive Modeling of Crystalline Materials
,”
Int. J. Solids Struct.
,
25
, No.
7
, pp.
797
801
.
42.
Zubelewicz
,
A.
,
Guo
,
Q.
,
Cutiongco
,
E. C.
,
Fine
,
M. E.
, and
Keer
,
L. M.
,
1990
, “
Micromechanical Method to Predict Fatigue Life of Solder
,”
ASME J. Electron. Packag.
,
112
, p.
179
179
.
43.
Desai
,
C. S.
,
Dishongh
,
T.
, and
Deneke
,
P.
,
1998
, “
Disturbed State Constitutive Model for Thermomechanical Behavior of Dislocated Silicon with Impurities
,”
J. Appl. Phys.
,
84
, pp.
5977
5984
.
44.
Chia
,
J.
, and
Desai
,
C. S.
, 1994, “Constitutive Modeling of Thermomechanical Response of Materials in Semiconductor Devices Using the Disturbed State Concept,” Report to NSF, Dept. of Civil Eng. and Eng. Mechs., The Univ. of Arizona, Tucson, AZ.
45.
Desai
,
C. S.
,
Chia
,
J.
,
Kundu
,
T.
, and
Prince
,
J. L.
,
1997
, “
Thermomechanical Response of Materials and Interfaces in Electronic Packaging: Part I—Unified Constitutive Model and Calibration, Part II—Unified Constitutive Models, Validation and Design
,”
ASME J. Electron. Packag.
,
119
, pp.
294
330
and 301–309.
46.
Roscoe
,
K. H.
,
Schofield
,
A.
, and
Wroth
,
C. P.
,
1958
, “
On the Yielding of Soils
,”
Geotechnique
,
8
, pp.
22
53
.
47.
Desai
,
C. S.
,
Basaran
,
C.
,
Dishongh
,
T.
, and
Prince
,
J. L.
,
1998
, “
Thermomechanical Analysis in Electronic Packaging with Unified Constitutive Model for Materials and Joints
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
21
, pp.
87
97
.
48.
Desai
,
C. S.
, and
Ma
,
Y.
,
1992
, “
Modeling of Joints and Interfaces Using the Disturbed State Concept
,”
Int. J. Num. Analyt. Methods in Geomech.
,
16
, pp.
623
653
.
49.
Raissain, M., Desai, C. S., and Lee, J. T., 1999, “A Unified Model Based on Disturbed State Concept and Multi Domain Method for Design and Reliability in Electronic Packaging,” Proc., Interpak 99, Hawaii.
50.
Desai
,
C. S.
,
Park
,
I. J.
, and
Shao
,
C.
,
1998
, “
Fundamental Yet Simplified Model for Liquefaction Instability
,”
Int. J. Num. Analyt. Methods in Geomechanics
,
22
, pp.
721
748
.
51.
Desai
,
C. S.
,
2000
, “
Liquefaction Using Disturbance and Energy Approaches
,”
J. of Geotech. And Geoenv. Eng., ASCE
,
126
, No.
7
, pp.
618
631
.
52.
de Borst
,
R.
,
Sluys
,
L. J.
,
Mu¨hlhaus
,
H. B.
, and
Pamin
,
J.
,
1993
, “
Fundamental Issues in Finite Element Analyses of Localization of Deformation
,”
J. Eng. Comput.
,
10
, pp.
99
121
.
53.
Bazant
,
Z. P.
,
1994
, “
Nonlocal Damage Theory Based on Micromechanics and Crack Interactions
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
120
, pp.
593
617
.
54.
Desai
,
C. S.
,
Basaran
,
C.
, and
Zhang
,
W.
,
1997
, “
Numerical Algorithms and Mesh Dependence in the Disturbed State Concept
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
3059
3083
.
55.
Desai
,
C. S.
, and
Zhang
,
W.
,
1998
, “
Computational Aspects of Disturbed State Constitutive Models
,”
Int. J. Computer Methods in Appl. Mech. and Eng.
,
151
, pp.
361
376
.
56.
Basaran
,
C.
,
Desai
,
C. S.
, and
Kundu
,
T.
,
1998
, “
Thermo-mechanical Finite Element Analysis of Problems in Electronic Packaging Using the Disturbed State Concept: Part I—Theory and Formulation, Part II—Verification and Application
,”
ASME J. Electron. Packag.
,
120
, pp.
41
47
, 48–53.
57.
Dishongh, T. J., and Desai, C. S., 1999, “Calibration of the Disturbed State Model for Thermomechanical Behavior of Various Solders,” Proc., Interpak 99, Hawaii.
58.
Zwick, J. W., Desai, C. S., and Ferdie, R. D., 1999, “Thermo-structural Analysis of a 313-Pin Plastic Ball Grid Array (PBGA),” Proc., NAFEMS Int. Conf., Newport, RI.
59.
Zwick, J. W., and Desai, C. S., 1999, “Structural Reliability of PBGA Solder Joints with the Disturbed State Concept,” Proc., Interpak 99, Hawaii.
60.
Solomon, H. D., 1985, “Low Cycle Fatigue of 60/40 Solder Plastic Strain Limited vs Displacement Limited Testing,” Proc., ASM Elect. Packaging Materials and Processes, pp. 29–47.
61.
Gerke, R. D., 1994, “Ceramic Solder-Grid-Array Interconnection Reliability Over a Wide Temperature Range,” Proc., Nat. Elect. Packaging and Production Conf., Anaheim, CA, pp. 1087–1094.
1.
Pecht, M. G., and Nash, F. R., 1994, “Predicting the Reliability of Electronic Equipment,” Proc., IEEE, Vol. 82, No. 7, pp. 992–1004;
2.
Perzyna, P., 1966, “Fundamental Problems in Viscoplasticity,” Advances in Applied Mechanics, Academic Press, NY, pp. 244–368.
1.
Darveaux, R., 1995, “Optimizing the Reliability of Their Small Outline Package (TSOP) Solder Joints,” Advances in Electronic Packaging, ASME, EEP Vol. 10-2, pp. 675–681.
2.
Gaffarian, R., 1997, “Ball Grid Array Packaging RTOP; Interim Environmental Test Results,” Jet Propulsion Laboratory, California Inst. Tech., Pasadena, CA.
You do not currently have access to this content.