Polyethylene-glycol-based thermal interface paste containing trifluoroacetic acid lithium salt (1.5 wt. percent optimum) and boron nitride particles (∼18.0 vol. percent optimum), as well as water and N, N-dimethylformamide for helping the dissociation of the salt to release ions, gives thermal contact conductance that is almost as high as that given by Sn-Pb solder, similar to that given by boron nitride particle filled sodium silicate, and much higher than that given by boron nitride particle filled silicone.
Issue Section:
Technical Papers
Keywords:
filled polymers,
particle reinforced composites,
thermal resistance,
packaging,
cooling,
Polymer,
Polyethylene Glycol,
Lithium,
Boron Nitride,
Thermal Interface,
Thermal Contact,
Thermal Conductance,
Composite
Topics:
Boron,
Contact resistance,
Lithium,
Particulate matter,
Ions,
Sodium,
Silicones,
Solders,
Thermal conductivity,
Water
1.
Wolff
, E. G.
, and Schneider
, D. A.
, 1998
, “Prediction of Thermal Contact Resistance Between Polished Surfaces
,” Int. J. Heat Mass Transf.
, 41
, pp. 3469
–3482
.2.
22
, pp. 3469
–3482
.1.
Ouellette, T., and de Sorgo, M., 1985, “Thermal Performance of Heat Transfer Interface Materials,” Proc., The Power Electronics Design Conf., Power Sources Users Conf., Cerritos, CA, pp. 134–138.
2.
Wilson, S. W., Norris, A. W., Scott, E. B., and Costello, M. R., 1996, “Thermally Conductive Adhesives for High Thermally Stressed Assembly,” Proc. Technical Program, Vol. 2, National Electronic Packaging and Production Conference, Reed Exhibition Companies, Norwalk, CT, pp. 788–796.
3.
Peterson, A. L., 1990, “Silicones With Improved Thermal Conductivity for Thermal Management in Electronic Packaging,” Proc. 40th Electronic Components and Technology Conf., Vol. 1, IEEE, Piscataway, NJ, pp. 613–619.
4.
Lu
, X.
, Xu
, G.
, Hofstra
, P. G.
, and Bajcar
, R. C.
, 1998
, “Moisture-Absorption, Dielectric Relaxation, and Thermal Conductivity Studies of Polymer Composites
,” J. Polym. Sci., Part B: Polym. Phys.
, 36
(13
), pp. 2259
–2265
.5.
Sasaski, T., Hisano, K., Sakamoto, T., Monma, S. Fijimori, Y., Iwasaki, H., and Ishizuka, M., 1995, “Development of Sheet Type Thermal Conductive Compound Using AlN,” Japan IEMT Symp. Proc., IEEE/CPMT Int. Electronic Manufacturing Technology (IEMT) Symp., IEEE, Piscataway, NJ, pp. 236–239.
6.
Xu
, Y.
, Luo
, X.
, and Chung
, D. D. L.
, 2000
, “Sodium Silicate Based Thermal Pastes for High Thermal Contact Conductance
,” J. Electron. Packag.
, 122
(2
), pp. 128
–131
.7.
Nishimoto
, A.
, Agehara
, K.
, Furuya
, N.
, Watanabe
, T.
, and Watanabe
, M.
, 1999
, “High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes With Hyperbranched Side Chains
,” Macromolecules
, 32
, pp. 1541
–1548
.8.
Parker
, W. J.
, Jenkins
, R. J.
, Butler
, C. P.
, and Abbott
, G. L.
, 1961
, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,” J. Appl. Phys.
, 32
(9
), pp. 1679
–1683
.9.
Inoue
, K.
, and Ohmura
, E.
, 1988
, “Measurement by Laser Flash Method of Thermal Diffusivity of Two-Layer Composites
,” Yosetsu Gakkai Ronbunshu/Q.J. Japan Welding Soc.
, 6
(3
), pp. 130
–134
.Copyright © 2002
by ASME
You do not currently have access to this content.