The failure modes of flip chip solder joints under high electrical current density are studied experimentally. Three different failure modes are reported. Only one of the failure modes is caused by the combined effect of electromigration and thermomigration, where void nucleation and growth contribute to the ultimate failure of the module. The Ni under bump metallization–solder joint interface is found to be the favorite site for void nucleation and growth. The effect of pre-existing voids on the failure mechanism of a solder joint is also investigated
Issue Section:
Research Papers
1.
Lee
, T. Y.
, Tu
, K. N.
, Kuo
, S. M.
, and Frear
, D. R.
, 2001, “Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology
,” J. Appl. Phys.
0021-8979, 89
(6
), pp. 3189
–3194
.2.
Lee
, T. Y.
, and Tu
, K. N.
, 2001, “Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-bump Metallization
,” J. Appl. Phys.
0021-8979, 90
(9
), pp. 4502
–4508
.3.
Ye
, H.
, Basaran
, C.
, and Hopkins
, D.
, 2002, “Experiment Study on Reliability of Solder Joints Under Electrical Stressing-Nano-indentation, Atomic Flux Measurement
,” Proceedings of 2002 International Conference on Advanced Packaging and Systems, Reno, Nevada
.4.
Ye
, H.
, Lin
, M.
, and Basaran
, C.
, 2002, “Failure Modes and FEM Analysis of Power Electronic Packaging
,” Finite Elem. Anal. Design
0168-874X, 38
(7
), pp. 601
–612
.5.
Ye
, H.
, Basaran
, C.
, and Hopkins
, D.
, 2003, “Thermomigration in Pb-Sn Solder Joints Under Joule Heating during Electric Current Stressing
,” Appl. Phys. Lett.
0003-6951, 82
(8
), pp. 1045
–1047
.6.
Ye
, H.
, Hopkins
, D.
, and Basaran
, C.
, 2002, “Measurement and Effects of High Electrical Current Stress in Solder Joints
,” Proceedings of the 35th International Symposium on Microelectronics, Denver, Colorado
, pp. 427
–432
.7.
Ye
, H.
, Basaran
, C.
, and Hopkins
, D.
, 2003, “Damage Mechanics of Microelectronics Solder Joints under High Current Densities
,” Int. J. Solids Struct.
0020-7683, 40
(15
), pp. 4021
–4032
.8.
Li
, Z.
, Wu
, G.
, Wang
, Y.
, Li
, Z.
, and Sun
, Y.
, 1999, “Numerical Calculation of Electromigration under Pulse Current with Joule Heating
,” IEEE Electron Device Lett.
0741-3106, 46
(1
), pp. 70
–77
.9.
Lloyd
, J. R.
, 1999, “Electromigration in Integrated Circuit Conductors
,” J. Phys. D
0022-3727, 32
(17
), pp. R109
–R118
.10.
Blech
, I. A.
, 1976, “Electromigration in Thin Aluminum Films on Titanium Nitride
,” J. Appl. Phys.
0021-8979, 47
(4
), pp. 1203
–1208
.11.
Blech
, I. A.
, and Herring
, C.
, 1976, “Stress Generation by Electromigration
,” Appl. Phys. Lett.
0003-6951, 29
(3
), pp. 131
–133
.12.
Blech
, I. A.
, and Tai
, K. L.
, 1977, “Measurement of Stress Gradients Generated by Electromigration
,” Appl. Phys. Lett.
0003-6951, 30
(8
), pp. 387
–389
.13.
Blech
, I. A.
, and Kinsbron
, E.
, 1975, “Electromigration in Thin Gold Films on Molybdenum Surfaces
,” Thin Solid Films
0040-6090, 25
, pp. 327
–334
.14.
Kirchheim
, R.
, 1992, “Stress and Electromigration in Al-lines of Integrated-Circuits
,” Acta Metall. Mater.
0956-7151, 40
(2
), pp. 309
–323
.15.
Korhonen
, M. A.
, Borgesen
, P.
, Tu
, K. N.
, and Li
, C.-Y.
, 1993, “Stress Evolution due to Electromigration in Confined Metal Lines
,” J. Appl. Phys.
0021-8979, 73
(8
), pp. 3790
–3799
.16.
Park
, Y. J.
, Andleigh
, V. K.
, and Thompson
, C. V.
, 1999, “Simulations of Stress Evolution and the Current Density Scaling of Electromigration-induced Failure Times in Pure and Alloyed Interconnects
,” J. Appl. Phys.
0021-8979, 85
(7
), pp. 3546
–3555
.17.
Povirk
, G. L.
, 1997, “Numerical Simulations of Electromigration and Stress-driven Diffusion in Polycrystalline Interconnects
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 473
, pp. 337
–342
.18.
Rzepka
, S.
, Korhonen
, M. A.
, Weber
, E. R.
, and Li
, C. Y.
, 1997, “Three-dimensional Finite Element Simulation of Electro and Stress Migration Effects in Interconnect Lines
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 473
, pp. 329
–335
.19.
Sarychev
, M. E.
, and Zhinikov
, Yu. V.
, 1999, “General Model for Mechanical Stress Evolution during Electromigration
,” J. Appl. Phys.
0021-8979, 86
(6
), pp. 3068
–3075
.20.
Ye
, H.
, Basaran
, C.
, and Hopkins
, D.
, 2003, “Numerical Simulation of Stress Evolution During Electromigration in IC Interconnect Lines
,”IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886, 26
(3
), pp. 673
–681
.21.
Gleixner
, R. J.
, and Nix
, W. D.
, 1999, “A Physically Based Model of Electromigration and Stress-induced Void Formation in Microelectronic Interconnects
,” J. Appl. Phys.
0021-8979, 86
(4
), pp. 1932
–1944
.22.
Gleixner
, R. J.
, and Nix
, W. D.
, 1996, “An Analysis of Void Nucleation in Passivated Interconnect Lines Due to Vacancy Condensation and Interface Contamination
,” Materials Reliability in Microelectronics VI, San Francisco, CA, April 8–12 1996
, pp. 475
–480
.23.
Raj
, R.
, and Ashby
, M. F.
, 1975, “Intergranular Fracture at Elevated-Temperature
,” Acta Metall.
0001-6160, 23
(6
), pp. 653
–666
.24.
Hirth
, J. P.
, and Nix
, W. D.
, 1985, “Analysis of Cavity Nucleation in Solids Subjected to External and Internal Stresses
,” Acta Metall.
0001-6160, 33
(3
), pp. 359
–368
.25.
Flinn
, P. A.
, 1995, “Mechanical-Stress in Vlsi Interconnections—Origins, Effects, Measurement, and Modeling
,” MRS Bull.
0883-7694, 20
(11
), pp. 70
–73
.26.
Raj
, R.
, 1978, “Nucleation of Cavities at 2Nd Phase Particles in Grain- Boundaries
,” Acta Metall.
0001-6160, 26
(6
), pp. 995
–1006
.27.
Xue
, Q.
, Meyers
, M. A.
, and Nesterenko
, V. F.
, 2002, “Self-organization of Shear Bands in Titanium and Ti-6Al-4V Alloy
,” Acta Mater.
1359-6454, 50
(3
), pp. 575
–596
.28.
Kwok
, T.
, and Ho
, P. S.
, in Gupta
, D.
, and Ho
, P. S.
, (eds.), Diffusion Phenomena in Thin Films and Microelectronic Materials
, Noyes
, Park Ridge, NJ, 1988.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.