The failure modes of flip chip solder joints under high electrical current density are studied experimentally. Three different failure modes are reported. Only one of the failure modes is caused by the combined effect of electromigration and thermomigration, where void nucleation and growth contribute to the ultimate failure of the module. The Ni under bump metallization–solder joint interface is found to be the favorite site for void nucleation and growth. The effect of pre-existing voids on the failure mechanism of a solder joint is also investigated

1.
Lee
,
T. Y.
,
Tu
,
K. N.
,
Kuo
,
S. M.
, and
Frear
,
D. R.
, 2001, “
Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology
,”
J. Appl. Phys.
0021-8979,
89
(
6
), pp.
3189
3194
.
2.
Lee
,
T. Y.
, and
Tu
,
K. N.
, 2001, “
Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-bump Metallization
,”
J. Appl. Phys.
0021-8979,
90
(
9
), pp.
4502
4508
.
3.
Ye
,
H.
,
Basaran
,
C.
, and
Hopkins
,
D.
, 2002, “
Experiment Study on Reliability of Solder Joints Under Electrical Stressing-Nano-indentation, Atomic Flux Measurement
,”
Proceedings of 2002 International Conference on Advanced Packaging and Systems, Reno, Nevada
.
4.
Ye
,
H.
,
Lin
,
M.
, and
Basaran
,
C.
, 2002, “
Failure Modes and FEM Analysis of Power Electronic Packaging
,”
Finite Elem. Anal. Design
0168-874X,
38
(
7
), pp.
601
612
.
5.
Ye
,
H.
,
Basaran
,
C.
, and
Hopkins
,
D.
, 2003, “
Thermomigration in Pb-Sn Solder Joints Under Joule Heating during Electric Current Stressing
,”
Appl. Phys. Lett.
0003-6951,
82
(
8
), pp.
1045
1047
.
6.
Ye
,
H.
,
Hopkins
,
D.
, and
Basaran
,
C.
, 2002, “
Measurement and Effects of High Electrical Current Stress in Solder Joints
,”
Proceedings of the 35th International Symposium on Microelectronics, Denver, Colorado
, pp.
427
432
.
7.
Ye
,
H.
,
Basaran
,
C.
, and
Hopkins
,
D.
, 2003, “
Damage Mechanics of Microelectronics Solder Joints under High Current Densities
,”
Int. J. Solids Struct.
0020-7683,
40
(
15
), pp.
4021
4032
.
8.
Li
,
Z.
,
Wu
,
G.
,
Wang
,
Y.
,
Li
,
Z.
, and
Sun
,
Y.
, 1999, “
Numerical Calculation of Electromigration under Pulse Current with Joule Heating
,”
IEEE Electron Device Lett.
0741-3106,
46
(
1
), pp.
70
77
.
9.
Lloyd
,
J. R.
, 1999, “
Electromigration in Integrated Circuit Conductors
,”
J. Phys. D
0022-3727,
32
(
17
), pp.
R109
R118
.
10.
Blech
,
I. A.
, 1976, “
Electromigration in Thin Aluminum Films on Titanium Nitride
,”
J. Appl. Phys.
0021-8979,
47
(
4
), pp.
1203
1208
.
11.
Blech
,
I. A.
, and
Herring
,
C.
, 1976, “
Stress Generation by Electromigration
,”
Appl. Phys. Lett.
0003-6951,
29
(
3
), pp.
131
133
.
12.
Blech
,
I. A.
, and
Tai
,
K. L.
, 1977, “
Measurement of Stress Gradients Generated by Electromigration
,”
Appl. Phys. Lett.
0003-6951,
30
(
8
), pp.
387
389
.
13.
Blech
,
I. A.
, and
Kinsbron
,
E.
, 1975, “
Electromigration in Thin Gold Films on Molybdenum Surfaces
,”
Thin Solid Films
0040-6090,
25
, pp.
327
334
.
14.
Kirchheim
,
R.
, 1992, “
Stress and Electromigration in Al-lines of Integrated-Circuits
,”
Acta Metall. Mater.
0956-7151,
40
(
2
), pp.
309
323
.
15.
Korhonen
,
M. A.
,
Borgesen
,
P.
,
Tu
,
K. N.
, and
Li
,
C.-Y.
, 1993, “
Stress Evolution due to Electromigration in Confined Metal Lines
,”
J. Appl. Phys.
0021-8979,
73
(
8
), pp.
3790
3799
.
16.
Park
,
Y. J.
,
Andleigh
,
V. K.
, and
Thompson
,
C. V.
, 1999, “
Simulations of Stress Evolution and the Current Density Scaling of Electromigration-induced Failure Times in Pure and Alloyed Interconnects
,”
J. Appl. Phys.
0021-8979,
85
(
7
), pp.
3546
3555
.
17.
Povirk
,
G. L.
, 1997, “
Numerical Simulations of Electromigration and Stress-driven Diffusion in Polycrystalline Interconnects
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
473
, pp.
337
342
.
18.
Rzepka
,
S.
,
Korhonen
,
M. A.
,
Weber
,
E. R.
, and
Li
,
C. Y.
, 1997, “
Three-dimensional Finite Element Simulation of Electro and Stress Migration Effects in Interconnect Lines
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
473
, pp.
329
335
.
19.
Sarychev
,
M. E.
, and
Zhinikov
,
Yu. V.
, 1999, “
General Model for Mechanical Stress Evolution during Electromigration
,”
J. Appl. Phys.
0021-8979,
86
(
6
), pp.
3068
3075
.
20.
Ye
,
H.
,
Basaran
,
C.
, and
Hopkins
,
D.
, 2003, “
Numerical Simulation of Stress Evolution During Electromigration in IC Interconnect Lines
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
26
(
3
), pp.
673
681
.
21.
Gleixner
,
R. J.
, and
Nix
,
W. D.
, 1999, “
A Physically Based Model of Electromigration and Stress-induced Void Formation in Microelectronic Interconnects
,”
J. Appl. Phys.
0021-8979,
86
(
4
), pp.
1932
1944
.
22.
Gleixner
,
R. J.
, and
Nix
,
W. D.
, 1996, “
An Analysis of Void Nucleation in Passivated Interconnect Lines Due to Vacancy Condensation and Interface Contamination
,”
Materials Reliability in Microelectronics VI, San Francisco, CA, April 8–12 1996
, pp.
475
480
.
23.
Raj
,
R.
, and
Ashby
,
M. F.
, 1975, “
Intergranular Fracture at Elevated-Temperature
,”
Acta Metall.
0001-6160,
23
(
6
), pp.
653
666
.
24.
Hirth
,
J. P.
, and
Nix
,
W. D.
, 1985, “
Analysis of Cavity Nucleation in Solids Subjected to External and Internal Stresses
,”
Acta Metall.
0001-6160,
33
(
3
), pp.
359
368
.
25.
Flinn
,
P. A.
, 1995, “
Mechanical-Stress in Vlsi Interconnections—Origins, Effects, Measurement, and Modeling
,”
MRS Bull.
0883-7694,
20
(
11
), pp.
70
73
.
26.
Raj
,
R.
, 1978, “
Nucleation of Cavities at 2Nd Phase Particles in Grain- Boundaries
,”
Acta Metall.
0001-6160,
26
(
6
), pp.
995
1006
.
27.
Xue
,
Q.
,
Meyers
,
M. A.
, and
Nesterenko
,
V. F.
, 2002, “
Self-organization of Shear Bands in Titanium and Ti-6Al-4V Alloy
,”
Acta Mater.
1359-6454,
50
(
3
), pp.
575
596
.
28.
Kwok
,
T.
, and
Ho
,
P. S.
, in
Gupta
,
D.
, and
Ho
,
P. S.
, (eds.),
Diffusion Phenomena in Thin Films and Microelectronic Materials
,
Noyes
, Park Ridge, NJ, 1988.
You do not currently have access to this content.