Free-standing electrically conductive nanotube and nanobridge structures offer a simple, small-scale, low-power option for pressure and temperature sensing. To sense pressure, a constant voltage is applied across the bridge. At small scales, the heat transfer coefficient is pressure-dependent. The change in the heat transfer coefficients results in the circuit operating at higher temperatures, with different resistances, at low pressures. This in turn will lead to a change in the electrical resistivity of the system. If the system is held at constant voltage, this can be measured as a change in the current in such systems, representing a simple alternative to existing Pirani gauges. The current work simulates the Joule heating, conduction and convection heat transfer of a 5 μm long suspended single-wall carbon-nanotube, incorporating temperature-sensitive material properties. The simulation allows prediction of the thermo-electrical response of the systems. The results agree with the trends observed in existing devices. Additional results look at the effects of system length, temperature, and contact resistances between the substrate and the device.

References

1.
Kuo
,
C. Y.
,
Chan
,
C. L.
,
Liu
,
C. W.
,
Shiau
,
S. H.
, and
Ting
,
J. H.
,
2007
, “
Nano Temperature Sensor Using Selective Lateral Growth of Carbon Nanotube Between Electrodes
,”
IEEE Trans. Nanotechnol.
,
6
(
1
), pp.
63
69
.10.1109/TNANO.2006.888531
2.
Snow
,
E. S.
,
Perkins
,
F. K.
,
Houser
,
E. J.
,
Badascu
,
S. C.
, and
Reinecke
,
T. L.
,
2005
, “
Chemical Detection With a Single-Walled Carbon Nanotube Capacitor
,”
Science
,
307
(
5717
), pp.
1942
1945
.10.1126/science.1109128
3.
Kim
,
B. M.
,
Brintlinger
,
T.
,
Cobas
,
E.
,
Fuhrer
,
M. S.
,
Zheng
,
H. M.
,
Yu
,
Z.
,
Droopad
,
R.
,
Ramdani
,
J.
, and
Eisenbeiser
,
K.
,
2004
, “
High-Performance Carbon Nanotube Transistors on SrTiO3/Si Substrates
,”
Appl. Phys. Lett.
,
84
(
11
), pp.
1946
1948
.10.1063/1.1682691
4.
Rueckes
,
T.
,
Kim
,
K.
,
Joselevich
,
E.
,
Tseng
,
G. Y.
,
Cheung
,
C. L.
, and
Lieber
,
C. M.
,
2000
, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
,
389
(
5476
), pp.
94
97
.10.1126/science.289.5476.94
5.
Kumar
,
S.
,
Cola
,
B. A.
,
Jackson
,
R.
, and
Graham
,
S.
,
2011
, “
A Review of Carbon Nanotube Ensembles as Flexible Electronics and Advanced Packaging Materials
,”
ASME J. Electron. Packag.
,
133
(
2
), p.
020906
.10.1115/1.4004220
6.
Hu
,
M.
,
Shenogin
,
S.
,
Keblinski
,
P.
, and
Raravikar
,
N.
,
2007
, “
Thermal Energy Exchange Between Carbon Nanotube and Air
,”
Appl. Phys. Lett.
,
90
(23), p.
231905
.10.1063/1.2746954
7.
Kaul
,
A. B.
, and
Manohara
,
H.
,
2009
, “
Carbon Nanotube Vacuum Gauges With Wide Dynamic Range
,”
IEEE Trans. Nanotechnol.
,
8
(
2
), pp.
252
257
.10.1109/TNANO.2008.2009534
8.
Zhou
,
C.
,
Kong
,
J.
, and
Dai
,
H.
,
2000
, “
Intrinsic Electrical Properties of Individual Single-Walled Carbon Nanotubes With Small Band Gaps
,”
Phys. Rev. Lett.
,
84
(
2
), pp.
5604
5607
.10.1103/PhysRevLett.84.5604
9.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University
,
Oxford, UK
.
10.
Harris
,
P. J. F.
,
1999
,
Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century
,
Cambridge University Press
,
Cambridge, UK
.
11.
Savanova
,
V.
,
Yaish
,
Y.
,
Üstünel
,
H.
,
Roundy
,
D.
,
Arias
,
T. A.
, and
McEuen
,
P. L.
,
2004
, “
A Tunable Carbon Nanotube Electromechanical Oscillator
,”
Nature
,
431
(7006), pp.
284
287
.10.1038/nature02905
12.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2007
, “
Gas Damping of Carbon Nanotube Oscillators
,”
Appl. Phys. Lett.
,
91
(
10
), p.
103116
.10.1063/1.2779973
13.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2009
, “
Frequency-Dependent Free-Molecular Heat Transfer of Vibrating Cantilevers and Bridges
,”
Phys. Fluids
,
21
(
1
), p.
017101
.10.1063/1.3055285
14.
Lee
,
J.
,
Wright
,
T. L.
,
Abel
,
M. R.
,
Sunden
,
E. O.
,
Marchenkov
,
A.
,
Graham
,
S.
, and
King
,
W. P.
,
2007
, “
Thermal Conduction From Microcantilever Heaters in Partial Vacuum
,”
J. Appl. Phys.
,
101
(
1
), p.
014906
.10.1063/1.2403862
15.
Maghsoudi
,
E.
, and
Martin
,
M. J.
,
2012
, “
Scaling of Thermal Positioning in Microscale and Nanoscale Bridge Structures
,”
ASME J. Heat Transfer
,
134
(
10
), p.
102401
.10.1115/1.4006661
16.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2001
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
17.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion
,
Oxford University Press
,
Oxford, UK
.
18.
Marconnet
,
A. M.
,
Panzer
,
M. A.
, and
Goodson
,
K. E.
,
2013
, “
Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials
,”
Rev. Mod. Phys.
,
85
(
2
), pp.
1295
1326
.10.1103/RevModPhys.85.1295
19.
Mingo
,
N.
, and
Broido
,
D. A.
,
2005
, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,”
Phys. Rev. Lett.
,
95
(
9
), p.
096105
.10.1103/PhysRevLett.95.096105
20.
Hu
,
J.
,
Ruan
,
X.
, and
Chen
,
Y. P.
,
2009
, “
Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study
,”
Nano Lett.
,
9
(
7
), pp.
2730
2735
.10.1021/nl901231s
21.
Sadeghi
,
M. M.
,
Pettes
,
M. T.
, and
Shi
,
L.
,
2012
, “
Thermal Transport in Graphene
,”
Solid State Commun.
,
152
(
15
), pp.
1321
1330
.10.1016/j.ssc.2012.04.022
You do not currently have access to this content.