This paper reports on novel thermal testbeds with embedded micropin-fin heat sinks that were designed and microfabricated in silicon. Two micropin-fin arrays were presented, each with a nominal pin height of 200 μm and pin diameters of 90 μm and 30 μm. Single-phase and two-phase thermal testing of the micropin-fin array heat sinks were performed using de-ionized (DI) water as the coolant. The tested mass flow rate was 0.001 kg/s, and heat flux ranged from 30 W/cm2 to 470 W/cm2. The maximum heat transfer coefficient reached was 60 kW/m2 K. The results obtained from the two testbeds were compared and analyzed, showing that density of the micropin-fins has a significant impact on thermal performance. The convective thermal resistance in the single-phase region was calculated and fitted to an empirical model. The model was then used to explore the tradeoff between the electrical and thermal performance in heat sink design.

References

1.
Jeddeloh
,
J.
, and
Keeth
,
B.
,
2012
, “
Hybrid Memory Cube New DRAM Architecture Increases Density and Performance
,”
2012 IEEE Symposium on VLSI Technology
(
VLSIT
), Honolulu, HI, June 12–14, pp.
87
88
.
2.
Meindl
,
J. D.
,
2003
, “
Interconnect Opportunities for Gigascale Integration
,”
IEEE Micro
,
23
(
3
), pp.
28
35
.
3.
Bohr
,
M. T.
,
1995
, “
Interconnect Scaling—The Real Limiter to High Performance ULSI
,”
International Electron Devices Meeting
(
IEDM’95
), Washington, DC, Dec. 10–13, pp.
241
244
.
4.
Lau
,
J. H.
,
2014
, “
Overview and Outlook of Three-Dimensional Integrated Circuit Packaging, Three-Dimensional Si Integration, and Three-Dimensional Integrated Circuit Integration
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
040801
.
5.
Zhang
,
Y.
,
Zheng
,
L.
, and
Bakir
,
M. S.
,
2013
, “
3-D Stacked Tier-Specific Microfluidic Cooling for Heterogeneous 3-D ICs
,”
IEEE Trans. CPMT
,
3
(
11
), pp.
1811
1819
.
6.
Sarvey
,
T. E.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Oh
,
H.
, and
Bakir
,
M. S.
,
2014
, “
Thermal and Electrical Effects of Staggered Micropin-Fin Dimensions for Cooling of 3D Microsystems
,”
2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
205
212
.
7.
Madhour
,
Y.
,
d'Entremont
,
B. P.
,
Marcinichen
,
J. B.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2014
, “
Modeling of Two-Phase Evaporative Heat Transfer in Three-Dimensional Multicavity High Performance Microprocessor Chip Stacks
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021006
.
8.
Zhang
,
Y.
,
Dembla
,
A.
,
Joshi
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
3D Stacked Microfluidic Cooling for High-Performance 3D ICs
,”
IEEE 62nd Electronic Components and Technology Conference
(
ECTC 2012
), San Diego, CA, May 29–June 1, pp.
1644
1650
.
9.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.
10.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Cesar
,
W.
,
Toral
,
G.
,
Temiz
,
Y.
, and
Leblebici
,
Y.
,
2009
, “
Validation of the Porous-Medium Approach to Model Interlayer-Cooled 3D-Chip Stacks
,”
IEEE International Conference on 3D System Integration
(
3DIC 2009
), San Francisco, CA, Sept. 28–30, pp.
1
10
.
11.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
12.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Experimental Study of Saturated Flow Boiling Heat Transfer in an Array of Staggered Micro-Pin-Fins
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1853
1863
.
13.
Reeser
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
High Quality Flow Boiling Heat Transfer and Pressure Drop in Microgap Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
78
, pp.
974
985
.
14.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1018
1034
.
15.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1349
1364
.
16.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.
17.
Rubinstein
,
J.
,
Penfield
,
P.
, and
Horowitz
,
M. A.
,
1983
, “
Signal Delay in RC Tree Networks
,”
IEEE Trans. Comput. Aided Des.
,
2
(
3
), pp.
202
211
.
18.
19.
Sarafis
,
P.
,
Benech
,
P.
, and
Nassiopoulou
,
A. G.
,
2014
, “
Cu Nanolines for Application in RF Interconnect
,”
15th International Conference on Ultimate Integration on Silicon
(
ULIS
), Stockholm, Sweden, Apr. 7–9, pp.
149
152
.
You do not currently have access to this content.