For thermal management architectures wherein the heat sink is embedded close to a dynamic heat source, nonuniformities may propagate through the heat sink base to the coolant. Available transient models predict the effective heat spreading resistance to calculate chip temperature rise, or simplify to a representative axisymmetric geometry. The coolant-side temperature response is seldom considered, despite the potential influence on flow distribution and stability in two-phase microchannel heat sinks. This study solves three-dimensional transient heat conduction in a Cartesian chip-on-substrate geometry to predict spatial and temporal variations of temperature on the coolant side. The solution for the unit step response of the three-dimensional system is extended to any arbitrary temporal heat input using Duhamel's method. For time-periodic heat inputs, the steady-periodic solution is calculated using the method of complex temperature. As an example case, the solution of the coolant-side temperature response in the presence of different transient heat inputs from multiple heat sources is demonstrated. To represent a case where the thermal spreading from a heat source is localized, the problem is simplified to a single heat source at the center of the domain. Metrics are developed to quantify the degree of spatial and temporal nonuniformity in the coolant-side temperature profiles. These nonuniformities are mapped as a function of nondimensional geometric parameters and boundary conditions. Several case studies are presented to demonstrate the utility of such maps.

References

1.
Bar-Cohen
,
A.
,
2013
, “
Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020907
.
2.
Drummond
,
K. P.
,
Weibel
,
J. A.
,
Garimella
,
S. V.
,
Back
,
D.
,
Janes
,
D. B.
,
Sinanis
,
M. D.
, and
Peroulis
,
D.
,
2016
, “
Evaporative Intrachip Hotspot Cooling With a Hierarchical Manifold Microchannel Heat Sink Array
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp. 307–315.
3.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
,
2003
, “
Two-Phase Flow Patterns in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
29
(
3
), pp.
341
360
.
4.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Flow Operational Maps for Multi-Microchannel Evaporators
,”
Int. J. Heat Fluid Flow
,
42
, pp.
176
189
.
5.
Wu
,
H. Y.
,
Cheng
,
P.
, and
Wang
,
H.
,
2006
, “
Pressure Drop and Flow Boiling Instabilities in Silicon Microchannel Heat Sinks
,”
J. Micromech. Microeng.
,
16
(
10
), p.
2138
.
6.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
7.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
,
Cummins
,
G.
,
Kenning
,
D. B. R.
, and
Karayiannis
,
T. G.
,
2011
, “
Experimental Investigation of Non-Uniform Heating Effect on Flow Boiling Instabilities in a Microchannel-Based Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
309
324
.
8.
Ritchey
,
S. N.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Local Measurement of Flow Boiling Heat Transfer in an Array of Non-Uniformly Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
71
, pp.
206
216
.
9.
Ritchey
,
S.
,
Weibel
,
J.
, and
Garimella
,
S.
,
2014
, “
Effects of Non-Uniform Heating on the Location and Magnitude of Critical Heat Flux in a Microchannel Heat Sink
,”
Int. J. Micro-Nano Scale Transp.
,
5
(
3
), pp.
95
108
.
10.
Hingorani
,
S.
,
Fahrner
,
C. J.
,
Mackowski
,
D. W.
,
Gooding
,
J. S.
, and
Jaeger
,
R. C.
,
1994
, “
Optimal Sizing of Planar Thermal Spreaders
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
296
301
.
11.
Lee
,
S.
,
Song
,
S.
,
Au
,
V.
, and
Moran
,
K. P.
,
1995
, “
Constriction/Spreading Resistance Model for Electronics Packaging
,” 4th
ASME/JSME
Thermal Engineering Joint Conference, Lahaina, HI, Mar. 19–24, pp.
199
206
.
12.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2003
, “
Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
178
185
.
13.
Skadron
,
K.
,
Abdelzaher
,
T.
, and
Stan
,
M. R.
,
2002
, “
Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management
,”
8th International Symposium on High-Performance Computer Architecture
(
HPCA
), Cambridge, MA, Feb. 2–6, pp.
17
28
.
14.
Yovanovich
,
M. M.
,
1997
, “
Transient Spreading Resistance of Arbitrary Isoflux Contact Areas—Development of a Universal Time Function
,”
AIAA
Paper No. AIAA-97-2458.
15.
Yazawa
,
K.
, and
Ishizuka
,
M.
,
2004
, “
Optimization of Heat Sink Design With Focus on Transient Thermal Response
,”
ASME
Paper No. IMECE2004-60513.
16.
Fisher
,
T. S.
,
Avedisian
,
C. T.
, and
Krusius
,
J. P.
,
1996
, “
Transient Thermal Response Due to Periodic Heating on a Convectively Cooled Substrate
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part B
,
19
(
1
), pp.
255
262
.
17.
Kadambi
,
V.
, and
Abuaf
,
N.
,
1983
, “
Axisymmetric and Three-Dimensional Chip-Spreader Calculations
,”
AIChE Symp. Ser.
,
79
, pp.
130
139
.
18.
Kadambi
,
V.
, and
Abuaf
,
N.
,
1985
, “
An Analysis of the Thermal Response of Power Chip Packages
,”
IEEE Trans. Electron Devices
,
32
(
6
), pp.
1024
1033
.
19.
Hahn
,
D. W.
, and
Özişik
,
M. N.
,
2012
, “
Use of Duhamel's Theorem
,”
Heat Conduction
,
Wiley
,
Hoboken, NJ
, pp.
273
299
.
20.
Arpaci
,
V.
,
1966
,
Conduction Heat Transfer
,
Addison-Wesley
,
New York
.
You do not currently have access to this content.