The development of newer and more efficient cooling techniques to sustain the increasing power density of high-performance computing systems is becoming one of the major challenges in the development of microelectronics. In this framework, two-phase cooling is a promising solution for dissipating the greater amount of generated heat. In the present study, an experimental investigation of two-phase flow boiling in a micro-pin fin evaporator is performed. The micro-evaporator has a heated area of 1 cm2 containing 66 rows of cylindrical in-line micro-pin fins with diameter, height, and pitch of, respectively, 50 μm, 100 μm, and 91.7 μm. The working fluid is R1234ze(E) tested over a wide range of conditions: mass fluxes varying from 750 kg/m2 s to 1750 kg/m2 s and heat fluxes ranging from 20 W/cm2 to 44 W/cm2. The effects of saturation temperature on the heat transfer are investigated by testing three different outlet saturation temperatures: 25 °C, 30 °C, and 35 °C. In order to assess the thermal–hydraulic performance of the current heat sink, the total pressure drops are directly measured, while local values of heat transfer coefficient are evaluated by coupling high-speed flow visualization with infrared temperature measurements. According to the experimental results, the mass flux has the most significant impact on the heat transfer coefficient while heat flux is a less influential parameter. The vapor quality varies in a range between 0 and 0.45. The heat transfer coefficient in the subcooled region reaches a maximum value of about 12 kW/m2 K, whilst in two-phase flow it goes up to 30 kW/m2 K.

References

1.
Madhour
,
Y.
,
Zervas
,
M.
,
Schlottig
,
G.
,
Brunschwiler
,
T.
,
Leblebici
,
Y.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2013
, “
Integration of Intra Chip Stack Fluidic Cooling Using Thin-Layer Solder Bonding
,”
IEEE International 3D Systems Integration Conference
(
3DIC
), San Francisco, CA, Oct. 2–4.
2.
Brunschwiler
,
T.
,
Sridhar
,
A.
,
Ong
,
C. L.
, and
Schlottig
,
G.
,
2016
, “
Benchmarking Study on the Thermal Management Landscape for Three-Dimensional Integrated Circuits: From Back-Side to Volumetric Heat Removal
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010911
.
3.
Kosar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.
4.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
49
(17–18), pp.
3142
3155
.
5.
Prasher
,
R.
,
Chang
,
J.-Y.
,
Myers
,
A.
,
Chau
,
D.
, and
He
,
D.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
141
153
.
6.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
,
2009
, “
Interlayer Cooling Potential in Vertically Integrated Packages
,”
Microsyst. Technol.
,
15
(
1
), pp.
57
74
.
7.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122402
.
8.
Mita
,
J.
,
Qu
,
W.
, and
Siu-Ho
,
A.
,
2015
, “
Pressure Drop of Water Flow Across a Micro-Pin Fin Array—Part 1: Isothermal Liquid Single-Phase Flow
,”
ASME J. Heat Transfer
,
89
, pp.
1073
1082
.
9.
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(5–6), pp.
1018
1034
.
10.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
51
(5–6), pp.
1349
1364
.
11.
Kosar
,
A.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel
,”
ASME J. Heat Transfer
,
132
(4), p.
041007
.
12.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2009
, “
Experimental Study of Saturated Flow Boiling Heat Transfer in an Array of Staggered Micro-Pin-Fins
,”
Int. J. Heat Mass Transfer
,
52
(7–8), pp.
1853
1863
.
13.
Isaacs
,
S.
,
Kim
,
Y.
,
McNamara
,
A. J.
,
Joshi
,
Y.
,
Zhang
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
Two-Phase Flow and Heat Transfer in pin-Fin Enhanced Micro-Gaps
,” 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 30–June 1.
14.
David
,
T.
,
Mendler
,
D.
,
Mosyak
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
Thermal Management of Time-Varying High Heat Flux Electronic Devices
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021003
.
15.
Reeser
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
High Quality ow Boiling Heat Transfer and Pressure Drop in Microgap Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
78
, pp.
974
985
.
16.
Falsetti
,
C.
,
Jafarpoorchekab
,
H.
,
Magnini
,
M.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2017
, “
Two-Phase Operational Maps, Pressure Drop, and Heat Transfer for Flow Boiling of R236fa in a Micro-Pin Fin Evaporator
,”
Int. J. Heat Mass Transfer
,
107
, pp.
805
819
.
17.
Park
,
J. E.
,
Thome
,
J. R.
, and
Michael
,
B.
,
2009
, “
Effect of Inlet Orifices on Saturated CHF and flow Visualization in Multi-Microchannel Heat Sinks
,” 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 15–19.
18.
Han
,
X.
,
Fedorov
,
A.
, and
Joshi
,
Y.
,
2016
, “
Flow Boiling in Microgaps for Thermal Management of High Heat Flux Microsystems
,”
ASME J. Electron. Packag.
,
138
(
4
), p.
040801
.
19.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
20.
Lee
,
P.
, and
Garimella
,
V.
,
2008
, “
Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays
,”
Int. J. Heat Mass Transfer
,
51
(3–4), pp.
789
806
.
21.
Renfer
,
A.
,
Tiwari
,
M. K.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2011
, “
Experimental Investigation Into Vortex Structure and Pressure Drop Across Microcavities in 3D Integrated Liquid Electronics
,”
Exp. Fluids
,
51
(
3
), pp.
731
741
.
22.
Nieuwstadt
,
F. T.
,
Boersma
,
B. J.
, and
Westerweel
,
J.
,
2015
,
Turbulence: Introduction to Theory and Applications of Turbulent Flows
,
Springer
, Cham, Switzerland, pp.
48
50
.
23.
Short
,
B. E.
,
Raad
,
P. E.
, and
Price
,
D. C.
,
2002
, “
Performance of Pin Fin Cast Aluminium Coldwalls—Part 2: Colburn j-Factor Correlations
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
397
403
.
24.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I. P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modelling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
.
25.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1972
, “
Heat Transfer From Tubes in Cross Flow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.
26.
Borhani
,
N.
,
Agostini
,
B.
, and
Thome
,
J. R.
,
2010
, “
A Novel Time Strip Flow Visualisation Technique for Investigation of Intermittent Dewetting and Dryout in Elongated Bubble Flow in a Microchannel Evaporator
,”
Int. J. Heat Mass Transfer
,
53
(21–22), pp.
4809
4818
.
27.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Heat Transfer and High-Speed Visualization of Refrigerant Flows in 100 × 100 μm Silicon Multi-Microchannels
,”
Int. J. Refrig.
,
36
(
2
), pp.
402
413
.
28.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow—Part 2: Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
873
886
.
29.
Huang
,
H.
, and
Thome
,
J. R.
,
2016
, “
Local Measurements and a New Flow Pattern Based Model for Subcooled and Saturated Flow Boiling Heat Transfer in Multi-Microchannel Evaporators
,”
Int. J. Heat Mass Transfer
,
103
, pp.
701
714
.
You do not currently have access to this content.