Abstract

Flexible printed circuits (FPCs) are widely used in electronic equipment such as mobile devices and wearable sensors. The conductive electric lines in these circuits are printed using nanoparticle metal ink and ink-jet direct write methods. Physical characteristics such as flexibility and mechanical durability of metal nanoparticle ink lines have been evaluated by bending or tensile tests. In contrast, the electrical characteristics of these lines have not been sufficiently evaluated, and the failure mechanism under high-density current has not been clarified. When electric devices are scaled down, current density and Joule heating increase in conductive lines and electromigration (EM) damage becomes a severe problem. Therefore, reducing the EM damage is extremely important to enhance the device reliability. In this study, a failure analysis of Ag nanoparticle ink lines were assessed using current loading tests and microscopic observations to discuss the damage mechanism and evaluate electrical reliability under high-density current. Atomic transport due to EM was observed at 60 kA/cm2 current loading, and relatively large aggregates and grain growth were observed at 120 kA/cm2 current loading. The time to open circuit was longer at 120 kA/cm2 than at 60 kA/cm2. The formation of large aggregates and unstable changes in the potential drop were observed at the two values of current density. It is considered that aggregate formation and grain growth affected the atomic transport by EM.

References

1.
Honda
,
W.
,
Harada
,
S.
,
Arie
,
T.
,
Akita
,
S.
, and
Takei
,
K.
,
2014
, “
Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques
,”
Adv. Funct. Mater.
,
24
(
22
), pp.
3299
3304
.10.1002/adfm.201303874
2.
Bryce
,
P. D.
,
Trent
,
K. Z.
,
Brian
,
D. R.
, and
Larry
,
L. H.
,
2018
, “
Regional Stiffness Reduction Using Lamina Emergent Torsional Joints for Flexible Printed Circuit Board Design
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
041001
.10.1115/1.4040552
3.
Chong
,
Y.
,
Charles
,
I. U.
, and
Suresh
,
K. S.
,
2020
, “
Mechanical Characterization of Embedded Serpentine Conductors in Wearable Electronic
,”
ASME J. Electron. Packag.
,
142
(
2
), p.
021007
.10.1115/1.4046163
4.
Gao
,
W.
,
Emaminejad
,
S.
,
Nyein
,
H. Y. Y.
,
Challa
,
S.
,
Chen
,
K.
,
Peck
,
A.
,
Fahad
,
H. M.
,
Ota
,
H.
,
Shiraki
,
H.
,
Kiriya
,
D.
,
Lien
,
D. H.
,
Brooks
,
G. A.
,
Davis
,
R. W.
, and
Javey
,
A.
,
2016
, “
Fully Integrated Wearable Sensor Arrays for Multiplexed In Situ Perspiration Analysis
,”
Nature
,
529
(
7587
), pp.
509
514
.10.1038/nature16521
5.
Petukhov
,
D. I.
,
Kirikova
,
M. N.
,
Bessonov
,
A. A.
, and
Bailey
,
M. J. A.
,
2014
, “
Nickel and Copper Conductive Patterns Fabricated by Reactive Inkjet Printing Combined With Electroless Plating
,”
Mater. Lett.
,
132
, pp.
302
306
.10.1016/j.matlet.2014.06.109
6.
Fuller
,
S. B.
,
Wilhelm
,
E. J.
, and
Jacobson
,
J. M.
,
2002
, “
Ink-Jet Printed Nanoparticle Microelectromechanical Systems
,”
J. Microelectromech. Syst.
,
11
(
1
), pp.
54
60
.10.1109/84.982863
7.
Zhang
,
Z.
,
Zhang
,
X.
,
Xin
,
Z.
,
Deng
,
M.
,
Wen
,
Y.
, and
Song
,
Y.
,
2011
, “
Synthesis of Monodisperse Silver Nanoparticles for Ink-Jet Printed Flexible Electronics
,”
Nanotechnology
,
22
(
42
), p.
425601
.10.1088/0957-4484/22/42/425601
8.
Hassan
,
G.
,
Bae
,
J.
, and
Lee
,
C. H.
,
2018
, “
Ink-Jet Printed Transparent and Flexible Electrodes Based on Silver Nanoparticles
,”
J. Mater. Sci.: Mater. Electron.
,
29
(
1
), pp.
49
55
.10.1007/s10854-017-7886-2
9.
Yunxia
,
G.
,
Rui
,
L.
,
Xianping
,
W.
,
Jing
,
L.
, and
Qianfeng
,
F.
,
2016
, “
Flexible RFID Tag Inductor Printed by Liquid Metal Ink Printer and Its Characterization
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
031007
.10.1115/1.4034062
10.
Seo
,
J. H.
,
Zhang
,
Y.
,
Yuan
,
H. C.
,
Wang
,
Y.
,
Zhou
,
W.
,
Ma
,
J.
,
Ma
,
Z.
, and
Qin
,
G.
,
2013
, “
Investigation of Various Mechanical Bending Strains on Characteristics of Flexible Monocrystalline Silicon Nanomembrane Diodes on a Plastic Substrate
,”
Microelectron. Eng.
,
110
, pp.
40
43
.10.1016/j.mee.2013.05.001
11.
Kao
,
H. I.
,
Cho
,
C. L.
,
Chang
,
L. C.
, and
Wu
,
Y. H.
,
2015
, “
Inkjet-Printed Silver Film on Multilayer Liquid Crystal Polymer for Fabricating a Miniature Stub-Loaded Bandpass Filter
,”
Thin Solid Films
,
584
, pp.
198
203
.10.1016/j.tsf.2015.01.016
12.
Yang
,
S. M.
,
Lee
,
Y. S.
,
Jang
,
Y.
,
Byun
,
D.
, and
Choa
,
S. H.
,
2016
, “
Electromechanical Reliability of a Flexible Metal-Grid Transparent Electrode Prepared by Electrohydrodynamic (EHD) Jet Printing
,”
Microelectron. Reliab.
,
65
, pp.
151
159
.10.1016/j.microrel.2016.07.146
13.
Kim
,
D.
, and
Moon
,
J.
,
2005
, “
Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics
,”
Electrochem. Solid-State Lett.
,
8
(
11
), pp.
J30
J33
.10.1149/1.2073670
14.
Roshanghias
,
A.
,
2018
, “
Sinter Bonding of Inkjet-Printed Ag Die-Attach as an Alternative to Ag Paste
,”
J. Mater. Sci. Mater. Electron.
,
29
(
13
), pp.
11421
11428
.10.1007/s10854-018-9234-6
15.
Park
,
J. U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
,
Georgiadis
,
J. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.10.1038/nmat1974
16.
Sasagawa
,
K.
,
Naito
,
K.
,
Saka
,
M.
, and
Abé
,
H.
,
1999
, “
A Method to Predict Electromigration Failure of Metal Lines
,”
J. Appl. Phys.
,
86
(
11
), pp.
6043
6045
.10.1063/1.371652
17.
Zhao
,
Z.
,
Mamidanna
,
A.
,
Lefky
,
C.
,
Hildreth
,
O.
, and
Alford
,
T. L.
,
2016
, “
A Percolative Approach to Investigate Electromigration Failure in Printed Ag Structures
,”
J. Appl. Phys.
,
120
(
12
), p.
125104
.10.1063/1.4963755
18.
Xu
,
X.
,
Lu
,
Y.
,
Tang
,
C.
,
Sun
,
Q.
, and
Huang
,
F.
,
2018
, “
A Simple Technique to Prevent Electromigration Damage in Printed Ag Thin Wires
,”
Mater. Lett.
,
225
, pp.
21
23
.10.1016/j.matlet.2018.04.067
19.
Jang
,
K.
,
T.
,
Hwang
,
J. S.
,
Park
,
Y. J.
,
Lee
,
J. C.
,
Kim
,
N. R.
,
Yu
,
J. W.
, and
Joo
,
Y. C.
,
2017
, “
Current-Induced Morphological Evolution and Reliability of Ag Interconnects Fabricated by a Printing Method Based on Nanoparticles
,”
RSC Adv.
,
7
(
16
), pp.
9719
9723
.10.1039/C6RA27259B
20.
Sato
,
S.
,
Fujisaki
,
K.
, and
Sasagawa
,
K.
,
2016
, “
Damage of Single-Wall Carbon Nanotube Network Structure Under Electric Current Loading
,”
Mech. Eng. J.
,
3
(
6
), pp.
16
00292
.10.1299/mej.16-00292
21.
Park
,
J. Y.
,
Moon
,
D. I.
,
Seol
,
M. L.
,
Jeon
,
C. H.
,
Jeon
,
G. J.
,
Han
,
J. W.
,
Kim
,
C. K.
,
Park
,
S. J.
,
Lee
,
H. C.
, and
Choi
,
Y. K.
,
2016
, “
Controllable Electrical and Physical Breakdown of Poly-Crystalline Silicon Nanowires by Thermally Assisted Electromigration
,”
Sci. Rep.
,
6
, p.
19314
.10.1038/srep19314
22.
Moriwaki
,
T.
,
Sasagawa
,
K.
,
Sugawara
,
Y.
,
Fujisaki
,
K.
, and
Mineta
,
T.
,
2019
, “
Anode-Side Failure of a Cuprous Oxide Semiconductor Caused by High-Density Current Loading
,”
J. Electron. Mater.
,
48
(
11
), pp.
6949
6953
.10.1007/s11664-019-07540-9
23.
Wang
,
Z.
,
Wang
,
W.
,
Jiang
,
Z.
, and
Yu
,
D.
,
2016
, “
Low Temperature Sintering Nano-Silver Conductive Ink Printed on Cotton Fabric as Printed Electronics
,”
Prog. Org. Coat.
,
101
, pp.
604
611
.10.1016/j.porgcoat.2016.08.019
24.
Shao
,
W.
,
Li
,
G.
,
Zhu
,
P.
,
Zhang
,
Y.
,
Ouyang
,
Q.
,
Sun
,
R.
,
Chen
,
C.
, and
Wong
,
C. P.
,
2018
, “
Facile Synthesis of Low Temperature Sintering Ag Nanoparticles for Printed Flexible Electronics
,”
J. Mater. Sci.: Mater. Electron.
,
29
(
6
), pp.
4432
4440
.10.1007/s10854-017-8390-4
25.
Rajan
,
K.
,
Roppolo
,
I.
,
Chiappone
,
A.
,
Bocchini
,
S.
,
Perrone
,
D.
, and
Chiolerio
,
A.
,
2016
, “
Silver Nanoparticle Ink Technology: State of the Art
,”
Nanotechnol. Sci. Appl.
,
9
, pp.
1
13
.10.2147/NSA.S68080
26.
Salim
,
A.
, and
Lim
,
S.
,
2017
, “
Review of Recent Inkjet-Printed Capacitive Tactile Sensors
,”
Sensors
,
17
(
11
), p.
2593
.10.3390/s17112593
27.
Sophocleous
,
M.
, and
Atkinson
,
J. K.
,
2017
, “
A Review of Screen-Printed Silver/Silver Chloride (Ag/AgCl) Reference Electrodes Potentially Suitable for Environmental Potentiometric Sensors
,”
Sens. Actuators, A
,
267
, pp.
106
120
.10.1016/j.sna.2017.10.013
You do not currently have access to this content.