Abstract

There are many applications throughout the military and commercial industries whose thermal profiles are dominated by intermittent and/or periodic pulsed thermal loads. Typical thermal solutions for transient applications focus on providing sufficient continuous cooling to address the peak thermal loads as if operating under steady-state conditions. Such a conservative approach guarantees satisfying the thermal challenge but can result in significant cooling overdesign, thus increasing the size, weight, and cost of the system. Confluent trends of increasing system complexity, component miniaturization, and increasing power density demands are further exacerbating the divergence of the optimal transient and steady-state solutions. Therefore, there needs to be a fundamental shift in the way thermal and packaging engineers approach design to focus on time domain heat transfer design and solutions. Due to the application-dependent nature of transient thermal solutions, it is essential to use a codesign approach such that the thermal and packaging engineers collaborate during the design phase with application and/or electronics engineers to ensure the solution meets the requirements. This paper will provide an overview of the types of transients to consider—from the transients that occur during switching at the chip surface all the way to the system-level transients which transfer heat to air. The paper will cover numerous ways of managing transient heat including phase change materials (PCMs), heat exchangers, advanced controls, and capacitance-based packaging. Moreover, synergies exist between approaches to include application of PCMs to increase thermal capacitance or active control mechanisms that are adapted and optimized for the time constants and needs of the specific application. It is the intent of this transient thermal management review to describe a wide range of areas in which transient thermal management for electronics is a factor of significance and to illustrate which specific implementations of transient thermal solutions are being explored for each area. The paper focuses on the needs and benefits of fundamentally shifting away from a steady-state thermal design mentality to one focused on transient thermal design through application-specific, codesigned approaches.

References

References
1.
White
,
M.
,
Cooper
,
M.
,
Chen
,
Y.
, and
Bernstein
,
J.
,
2003
, “
Impact of Junction Temperature on Microelectronic Device Reliability and Considerations for Space Applications
,”
IEEE International Integrated Reliability Workshop Final Report, IEEE
,
Lake Tahoe, CA
, Oct. 20–23, pp.
133
136
.10.1109/IRWS.2003.1283320
2.
Jankowski
,
N. R.
, and
McCluskey
,
F. P.
,
2009
, “
Modeling Transient Thermal Response of Pulsed Power Electronic Packages
,”
IEEE Pulsed Power Conference, IEEE
,
Washington, DC
, June 28–July 2, pp.
820
825
.10.1109/PPC.2009.5386368
3.
Boteler
,
L. M.
,
Miner
,
S. M.
, and
Hinojosa
,
M.
,
2018
, “
Co-Designed High Voltage Module
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
San Diego, CA
, May 29–June 1, pp.
824
830
.10.1109/ITHERM.2018.8419567
4.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
5.
Zhang
,
P.
,
Xiao
,
X.
, and
Ma
,
Z. W.
,
2016
, “
A Review of the Composite Phase Change Materials: Fabrication, Characterization, Mathematical Modeling and Application to Performance Enhancement
,”
Appl. Energy
,
165
, pp.
472
510
.10.1016/j.apenergy.2015.12.043
6.
Boteler
,
L.
,
Fish
,
M.
,
Berman
,
M.
, and
Wang
,
J.
,
2019
, “
Understanding Trade-Offs of Phase Change Materials for Transient Thermal Mitigation
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
,
Las Vegas, NV
, May 28–31, pp.
870
877
.10.1109/ITHERM.2019.8757253
7.
Sharar
,
D. J.
,
Donovan
,
B. F.
,
Warzoha
,
R. J.
,
Wilson
,
A. A.
,
Leff
,
A. C.
, and
Hanrahan
,
B. M.
,
2019
, “
Solid-State Thermal Energy Storage Using Reversible Martensitic Transformations
,”
Appl. Phys. Lett.
,
114
(
14
), p.
143902
.10.1063/1.5087135
8.
Lu
,
T. J.
,
2000
, “
Thermal Management of High Power Electronics With Phase Change Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2245
2256
.10.1016/S0017-9310(99)00318-X
9.
Shamberger
,
P. J.
,
2016
, “
Cooling Capacity Figure of Merit for Phase Change Materials
,”
ASME J. Heat Transfer
,
138
(
2
), p.
024502
.10.1115/1.4031252
10.
Shao
,
L.
,
Raghavan
,
A.
,
Kim
,
G.-H.
,
Emurian
,
L.
,
Rosen
,
J.
,
Papaefthymiou
,
M. C.
,
Wenisch
,
T. F.
,
Martin
,
M. M. K.
, and
Pipe
,
K. P.
,
2016
, “
Figure-of-Merit for Phase-Change Materials Used in Thermal Management
,”
Int. J. Heat Mass Transfer
,
101
, pp.
764
771
.10.1016/j.ijheatmasstransfer.2016.05.040
11.
Moon
,
H.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2020
, “
High Power Density Thermal Energy Storage Using Additively Manufactured Heat Exchangers and Phase Change Material
,”
Int. J. Heat Mass Transfer
,
153
, p.
119591
.10.1016/j.ijheatmasstransfer.2020.119591
12.
Kant
,
K.
,
Shukla
,
A.
, and
Sharma
,
A.
,
2017
, “
Advancement in Phase Change Materials for Thermal Energy Storage Applications
,”
Sol. Energy Mater. Sol. Cells
,
172
, pp.
82
92
.10.1016/j.solmat.2017.07.023
13.
Shamberger
,
P. J.
, and
Bruno
,
N. M.
,
2020
, “
Review of Metallic Phase Change Materials for High Heat Flux Transient Thermal Management Applications
,”
Appl. Energy
,
258
, p.
113955
.10.1016/j.apenergy.2019.113955
14.
Shamberger
,
P. J.
, and
Fisher
,
T. S.
,
2018
, “
Cooling Power and Characteristic Times of Composite Heatsinks and Insulants
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1205
1215
.10.1016/j.ijheatmasstransfer.2017.10.085
15.
Barako
,
M. T.
,
Lingamneni
,
S.
,
Katz
,
J. S.
,
Liu
,
T.
,
Goodson
,
K. E.
, and
Tice
,
J.
,
2018
, “
Optimizing the Design of Composite Phase Change Materials for High Thermal Power Density
,”
J. Appl. Phys.
,
124
(
14
), p.
145103
.10.1063/1.5031914
16.
Feng
,
S.
,
Zhang
,
Y.
,
Shi
,
M.
,
Wen
,
T.
, and
Lu
,
T. J.
,
2015
, “
Unidirectional Freezing of Phase Change Materials Saturated in Open-Cell Metal Foams
,”
Appl. Therm. Eng.
,
88
, pp.
315
321
.10.1016/j.applthermaleng.2014.09.055
17.
Chintakrinda
,
K.
,
Weinstein
,
R. D.
, and
Fleischer
,
A. S.
,
2011
, “
A Direct Comparison of Three Different Material Enhancement Methods on the Transient Thermal Response of Paraffin Phase Change Material Exposed to High Heat Fluxes
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1639
1647
.10.1016/j.ijthermalsci.2011.04.005
18.
Mustaffar
,
A.
,
Harvey
,
A.
, and
Reay
,
D.
,
2015
, “
Melting of Phase Change Material Assisted by Expanded Metal Mesh
,”
Appl. Therm. Eng.
,
90
, pp.
1052
1060
.10.1016/j.applthermaleng.2015.04.057
19.
Sari
,
A.
,
Karaipekli
,
A.
, and
Kaygusuz
,
K.
,
2008
, “
Fatty Acid/Expanded Graphite Composites as Phase Change Material for Latent Heat Thermal Energy Storage, Energy Sources, Part a Recover
,”
Util. Environ. Eff.
,
30
(
5
), pp.
464
474
.10.1080/15567030601003700
20.
Thiagarajan
,
N.
,
De Bock
,
H. P. J.
, and
Gerstler
,
W. D.
,
2016
, “
Thermal Management System
,” U.S. Patent No. 9,476,651.
21.
Thiagarajan
,
N.
,
2017
, “
A Novel Approach to Development of a Thermal Capacitor
,” Electronics Cooling, Plymouth Meeting, PA, accessed Jan. 29, 2020, https://www.electronics-cooling.com/2017/02/novel-approach-development-thermal-capacitor/
22.
Liu
,
X.
,
Marbut
,
C.
,
Huitink
,
D.
,
Feng
,
G.
, and
Fleischer
,
A. S.
,
2019
, “
Influence of Crystalline Polymorphism on the Phase Change Properties of Sorbitol-Au Nanocomposites
,”
Mater. Today Energy
,
12
, pp.
379
388
.10.1016/j.mtener.2019.03.007
23.
Zeng
,
J. L.
,
Cao
,
Z.
,
Yang
,
D. W.
,
Sun
,
L. X.
, and
Zhang
,
L.
,
2010
, “
Thermal Conductivity Enhancement of Ag Nanowires on an Organic Phase Change Material
,”
J. Therm. Anal. Calorim.
,
101
(
1
), pp.
385
389
.10.1007/s10973-009-0472-y
24.
Khodadadi
,
J. M.
, and
Hosseinizadeh
,
S. F.
,
2007
, “
Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Great Potential for Improved Thermal Energy Storage
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
534
543
.10.1016/j.icheatmasstransfer.2007.02.005
25.
Sharma
,
R. K.
,
Ganesan
,
P.
,
Tyagi
,
V. V.
,
Metselaar
,
H. S. C.
, and
Sandaran
,
S. C.
,
2016
, “
Thermal Properties and Heat Storage Analysis of Palmitic Acid-TiO2 Composite as Nano-Enhanced Organic Phase Change Material (NEOPCM)
,”
Appl. Therm. Eng.
,
99
, pp.
1254
1262
.10.1016/j.applthermaleng.2016.01.130
26.
Şahan
,
N.
,
Fois
,
M.
, and
Paksoy
,
H.
,
2015
, “
Improving Thermal Conductivity Phase Change Materials—A Study of Paraffin Nanomagnetite Composites
,”
Sol. Energy Mater. Sol. Cells
,
137
, pp.
61
67
.10.1016/j.solmat.2015.01.027
27.
Sahan
,
N.
, and
Paksoy
,
H. O.
,
2014
, “
Thermal Enhancement of Paraffin as a Phase Change Material With Nanomagnetite
,”
Sol. Energy Mater. Sol. Cells
,
126
, pp.
56
61
.10.1016/j.solmat.2014.03.018
28.
Parameshwaran
,
R.
,
Deepak
,
K.
,
Saravanan
,
R.
, and
Kalaiselvam
,
S.
,
2014
, “
Preparation, Thermal and Rheological Properties of Hybrid Nanocomposite Phase Change Material for Thermal Energy Storage
,”
Appl. Energy
,
115
, pp.
320
330
.10.1016/j.apenergy.2013.11.029
29.
Weinstein
,
R. D.
,
Kopec
,
T. C.
,
Fleischer
,
A. S.
,
D'Addio
,
E.
, and
Bessel
,
C. A.
,
2008
, “
The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042405
.10.1115/1.2818764
30.
Sanusi
,
O.
,
Warzoha
,
R.
, and
Fleischer
,
A. S.
,
2011
, “
Energy Storage and Solidification of Paraffin Phase Change Material Embedded With Graphite Nanofibers
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4429
4436
.10.1016/j.ijheatmasstransfer.2011.04.046
31.
Teng
,
T.-P.
,
Cheng
,
C.-M.
, and
Cheng
,
C.-P.
,
2013
, “
Performance Assessment of Heat Storage by Phase Change Materials Containing MWCNTs and Graphite
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
637
644
.10.1016/j.applthermaleng.2012.07.002
32.
Karaipekli
,
A.
,
Biçer
,
A.
,
Sarı
,
A.
, and
Tyagi
,
V. V.
,
2017
, “
Thermal Characteristics of Expanded Perlite/Paraffin Composite Phase Change Material With Enhanced Thermal Conductivity Using Carbon Nanotubes
,”
Energy Convers. Manag.
,
134
, pp.
373
381
.10.1016/j.enconman.2016.12.053
33.
Warzoha
,
R. J.
, and
Fleischer
,
A. S.
,
2014
, “
Improved Heat Recovery From Paraffin-Based Phase Change Materials Due to the Presence of Percolating Graphene Networks
,”
Int. J. Heat Mass Transfer
,
79
, pp.
314
323
.10.1016/j.ijheatmasstransfer.2014.08.009
34.
Li
,
J. F.
,
Lu
,
W.
,
Zeng
,
Y. B.
, and
Luo
,
Z. P.
,
2014
, “
Simultaneous Enhancement of Latent Heat and Thermal Conductivity of Docosane-Based Phase Change Material in the Presence of Spongy Graphene
,”
Sol. Energy Mater. Sol. Cells
,
128
, pp.
48
51
.10.1016/j.solmat.2014.05.018
35.
Mehrali
,
M.
,
Latibari
,
S. T.
,
Mehrali
,
M.
,
Metselaar
,
H. S. C.
, and
Silakhori
,
M.
,
2013
, “
Shape-Stabilized Phase Change Materials With High Thermal Conductivity Based on Paraffin/Graphene Oxide Composite
,”
Energy Convers. Manag.
,
67
, pp.
275
282
.10.1016/j.enconman.2012.11.023
36.
Harish
,
S.
,
Orejon
,
D.
,
Takata
,
Y.
, and
Kohno
,
M.
,
2015
, “
Thermal Conductivity Enhancement of Lauric Acid Phase Change Nanocomposite With Graphene Nanoplatelets
,”
Appl. Therm. Eng.
,
80
, pp.
205
211
.10.1016/j.applthermaleng.2015.01.056
37.
Yu
,
S.
,
Jeong
,
S.-G.
,
Chung
,
O.
, and
Kim
,
S.
,
2014
, “
Bio-Based PCM/Carbon Nanomaterials Composites With Enhanced Thermal Conductivity
,”
Sol. Energy Mater. Sol. Cells
,
120
, pp.
549
554
.10.1016/j.solmat.2013.09.037
38.
McKinsey, 2020, “
Electrification
,”
McKinsey
, New York, accessed Jan. 29, 2020, https://www.mckinsey.com/features/mckinsey-center-for-future-mobility/overview/electrification
39.
Tolbert
,
L. M.
,
Ozpineci
,
B.
,
Islam
,
S. K.
, and
Peng
,
F. Z.
,
2002
, “
Impact of SiC Power Electronic Devices for Hybrid Electric Vehicles
,”
SAE Trans.
,
111
, pp.
765
771
.www.jstor.org/stable/44699485
40.
Arcus
,
C.
,
2018
, “
Tesla Model 3 & Chevy Bolt Battery Packs Examined
,” CleanTechnica, Online Media, accessed Jan. 29, 2020, https://cleantechnica.com/2018/07/08/tesla-model-3-chevy-bolt-battery-packs-examined/
41.
Zhou
,
P.
,
2010
, “
Electric Vehicle Thermal Management System
,” U.S. Patent No. 7,789,176.
42.
Kandasamy
,
R.
,
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.10.1016/j.applthermaleng.2007.06.010
43.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1642
1649
.10.1016/j.ijheatmasstransfer.2011.11.020
44.
Srikanth
,
R.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigation on the Heat Transfer Performance of a PCM Based Pin Fin Heat Sink With Discrete Heating
,”
Int. J. Therm. Sci.
,
111
, pp.
188
203
.10.1016/j.ijthermalsci.2016.08.018
45.
Harris
,
R. J.
,
Leland
,
Q.
,
Du
,
J.
, and
Chow
,
L. C.
,
2006
, “
Characterization of Paraffin-Graphite Foam and Paraffin-Aluminum Foam Thermal Energy Storage Systems
,”
AIAA
Paper No. 2006-3132
. 10.2514/6.2006-3132
46.
Fan
,
L.-W.
,
Xiao
,
Y.-Q.
,
Zeng
,
Y.
,
Fang
,
X.
,
Wang
,
X.
,
Xu
,
X.
,
Yu
,
Z.-T.
,
Hong
,
R.-H.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2013
, “
Effects of Melting Temperature and the Presence of Internal Fins on the Performance of a Phase Change Material (PCM)-Based Heat Sink
,”
Int. J. Therm. Sci.
,
70
, pp.
114
126
.10.1016/j.ijthermalsci.2013.03.015
47.
Ashraf
,
M. J.
,
Ali
,
H. M.
,
Usman
,
H.
, and
Arshad
,
A.
,
2017
, “
Experimental Passive Electronics Cooling: Parametric Investigation of Pin-Fin Geometries and Efficient Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
115
, pp.
251
263
.10.1016/j.ijheatmasstransfer.2017.07.114
48.
Arshad
,
A.
,
Ali
,
H. M.
,
Khushnood
,
S.
, and
Jabbal
,
M.
,
2018
, “
Experimental Investigation of PCM Based Round Pin-Fin Heat Sinks for Thermal Management of Electronics: Effect of Pin-Fin Diameter
,”
Int. J. Heat Mass Transfer
,
117
, pp.
861
872
.10.1016/j.ijheatmasstransfer.2017.10.008
49.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.10.1115/1.4030989
50.
Zhou
,
M.
,
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Pedersen
,
C. B. W.
,
2016
, “
Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems
,”
Struct. Multidiscip. Optim.
,
54
(
4
), pp.
1045
1060
.10.1007/s00158-016-1433-2
51.
de Bock
,
H. P.
,
2018
, “
Exploration of a Hybrid Analytical Thermal Topology Optimization Method for an Additively Manufactured Heat Sink
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
,
San Diego, CA
, 29 May–1 June, pp.
761
767
.10.1109/ITHERM.2018.8419585
52.
Iradukunda
,
A.-C.
, and
Huitink
,
D.
,
2019
, “
Topology Optimized Fins for a PCM-Based Thermal Management System
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
,
Las Vegas, NV
, May 28–31, pp.
1001
1005
.10.1109/ITHERM.2019.8757225
53.
Guterl
,
F.
,
2019
, “
That's Hot—This Lung-Inspired 3D-Printed Part for Cooling CO2 Could Take Power Generation to the Next Level
,” General Electric, Boston, MA, accessed Jan. 29, 2020, https://www.ge.com/reports/thats-hot-this-lung-inspired-3d-printed-part-for-cooling-co2-could-take-power-generation-to-the-next-level/
54.
Gerstler
,
W. D.
, and
Erno
,
D.
,
2017
, “
Introduction of an Additively Manufactured Multi-Furcating Heat Exchanger
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
,
Orlando, FL
, May 30–June 2, pp.
624
633
.10.1109/ITHERM.2017.7992545
55.
Jackson
,
S.
,
Palazotto
,
A.
,
Pachter
,
M.
, and
Niedbalski
,
N.
,
2019
, “
Control of Vapor Compression Cycles Under Transient Thermal Loads
,”
AIAA
Paper No. 2019-0536.10.2514/6.2019-0536
56.
Yang
,
Z.
,
Pollock
,
D. T.
, and
Wen
,
J. T.
,
2017
, “
Optimization and Predictive Control of a Vapor Compression Cycle Under Transient Pulse Heat Load
,”
Int. J. Refrig.
,
75
, pp.
14
25
.10.1016/j.ijrefrig.2017.01.009
57.
Walters
,
E.
,
Amrhein
,
M.
,
O'Connell
,
T.
,
Iden
,
S.
,
Lamm
,
P.
,
Yerkes
,
K.
,
Wolff
,
M.
,
McCarthy
,
K.
,
Raczkowski
,
B.
, and
Wells
,
J.
,
2010
, “
INVENT Modeling, Simulation, Analysis and Optimization
,”
AIAA
Paper No. 2010-287. 10.2514/6.2010-287
58.
McCarthy
,
P. T.
,
McCarthy
,
K.
,
Hasan
,
M.
,
Boyd
,
M.
,
Chang
,
M.
,
Walters
,
E.
, and
Niedbalski
,
N.
,
2019
, “
A Multi-Domain Component Based Modeling Toolset for Dynamic Integrated Power and Thermal System Modeling
,”
SAE
Paper No. 2019-01-1385
. 10.4271/2019-01-1385
59.
Kania
,
M.
,
Koeln
,
J.
,
Alleyne
,
A.
,
McCarthy
,
K.
,
Wu
,
N.
, and
Patnaik
,
S.
,
2012
, “
A Dynamic Modeling Toolbox for Air Vehicle Vapor Cycle Systems
,”
SAE
Paper No. 2012-01-2172
. 10.4271/2012-01-2172
60.
McCarthy
,
P.
,
Niedbalski
,
N.
,
McCarthy
,
K.
,
Walters
,
E.
,
Cory
,
J.
, and
Patnaik
,
S.
,
2016
, “
A First Principles Based Approach for Dynamic Modeling of Turbomachinery
,”
SAE Int. J. Aerosp.
,
9
(
1
), pp.
45
61
.10.4271/2016-01-1995
61.
Nafis
,
B. M.
,
Iradukunda
,
A.
, and
Huitink
,
D.
,
2018
, “
Drive Schedule Impacts to Thermal Design Requirements and the Associated Reliability Implications in Electric Vehicle Traction Drive Inverters
,”
ASME
Paper No. IPACK2018-8280.10.1115/IPACK2018-8280
62.
Huitink
,
D.
,
2017
, “
Thermomechanical Reliability Challenges and Goals and Design for Reliability Methodologies for Electric Vehicle Systems
,”
ASME
Paper No. IPACK2017-74245
. 10.1115/IPACK2017-74245
63.
Ciappa
,
M.
,
2002
, “
Selected Failure Mechanisms of Modern Power Modules
,”
Microelectron. Reliab.
,
42
(
4–5
), pp.
653
667
.10.1016/S0026-2714(02)00042-2
64.
Czyż
,
P.
,
2015
, “
Performance Evaluation of a 650V E-HEMT GaN Power Switch
,”
IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, IEEE
,
Yokohama, Japan
, Nov. 9–12, pp.
7
12
.10.1109/IECON.2015.7392939
65.
Omura
,
I.
,
Saito
,
W.
,
Domon
,
T.
, and
Tsuda
,
K.
,
2007
, “
Gallium Nitride Power HEMT for High Switching Frequency Power Electronics
,”
International Workshop on Physics of Semiconductor Devices
,
Mumbai, India
, Dec. 16–20, pp.
781
786
.10.1109/IWPSD.2007.4472634
66.
Boutros
,
K. S.
,
Chandrasekaran
,
S.
,
Luo
,
W. B.
, and
Mehrotra
,
V.
,
2006
, “
GaN Switching Devices for High-Frequency, KW Power Conversion
,”
IEEE International Symposium on Power Semiconductor Devices and IC's, IEEE
,
Naples, Italy
, June 4–8, pp.
1
4
.10.1109/ISPSD.2006.1666136
67.
Lundh
,
J. S.
,
Chatterjee
,
B.
,
Song
,
Y.
,
Baca
,
A. G.
,
Kaplar
,
R. J.
,
Beechem
,
T. E.
,
Allerman
,
A. A.
,
Armstrong
,
A. M.
,
Klein
,
B. A.
,
Bansal
,
A.
,
Talreja
,
D.
,
Pogrebnyakov
,
A.
,
Heller
,
E.
,
Gopalan
,
V.
,
Redwing
,
J. M.
,
Foley
,
B. M.
, and
Choi
,
S.
,
2019
, “
Multidimensional Thermal Analysis of an Ultrawide Bandgap AlGaN Channel High Electron Mobility Transistor
,”
Appl. Phys. Lett.
,
115
(
15
), p.
153503
.10.1063/1.5115013
68.
Dallas
,
J.
,
Pavlidis
,
G.
,
Chatterjee
,
B.
,
Lundh
,
J. S.
,
Ji
,
M.
,
Kim
,
J.
,
Kao
,
T.
,
Detchprohm
,
T.
,
Dupuis
,
R. D.
,
Shen
,
S.
,
Graham
,
S.
, and
Choi
,
S.
,
2018
, “
Thermal Characterization of Gallium Nitride P-i-n Diodes
,”
Appl. Phys. Lett.
,
112
(
7
), p.
073503
.10.1063/1.5006796
69.
Beechem
,
T. E.
,
McDonald
,
A. E.
,
Fuller
,
E. J.
,
Talin
,
A. A.
,
Rost
,
C. M.
,
Maria
,
J.-P.
,
Gaskins
,
J. T.
,
Hopkins
,
P. E.
, and
Allerman
,
A. A.
,
2016
, “
Size Dictated Thermal Conductivity of GaN
,”
J. Appl. Phys.
,
120
(
9
), p.
095104
.10.1063/1.4962010
70.
Chatterjee
,
B.
,
Zeng
,
K.
,
Nordquist
,
C. D.
,
Singisetti
,
U.
, and
Choi
,
S.
,
2019
, “
Device-Level Thermal Management of Gallium Oxide Field-Effect Transistors
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
9
(
12
), pp.
2352
2365
.10.1109/TCPMT.2019.2923356
71.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
72.
Rais-Zadeh
,
M.
,
Gokhale
,
V. J.
,
Ansari
,
A.
,
Faucher
,
M.
,
Théron
,
D.
,
Cordier
,
Y.
, and
Buchaillot
,
L.
,
2014
, “
Gallium Nitride as an Electromechanical Material
,”
J. Microelectromech. Syst.
,
23
(
6
), pp.
1252
1271
.10.1109/JMEMS.2014.2352617
73.
Zhao
,
Y.
,
Zhu
,
C.
,
Wang
,
S.
,
Tian
,
J. Z.
,
Yang
,
D. J.
,
Chen
,
C. K.
,
Cheng
,
H.
, and
Hing
,
P.
,
2004
, “
Pulsed Photothermal Reflectance Measurement of the Thermal Conductivity of Sputtered Aluminum Nitride Thin Films
,”
J. Appl. Phys.
,
96
(
8
), pp.
4563
4568
.10.1063/1.1785850
74.
Daly
,
B. C.
,
Maris
,
H. J.
,
Nurmikko
,
A. V.
,
Kuball
,
M.
, and
Han
,
J.
,
2002
, “
Optical Pump-and-Probe Measurement of the Thermal Conductivity of Nitride Thin Films
,”
J. Appl. Phys.
,
92
(
7
), pp.
3820
3824
.10.1063/1.1505995
75.
Nipko
,
J. C.
, and
Loong
,
C.-K.
,
1998
, “
Phonon Excitations and Related Thermal Properties of Aluminum Nitride
,”
Phys. Rev. B
,
57
(
17
), pp.
10550
10554
.10.1103/PhysRevB.57.10550
76.
Bonner
,
R. W.
,
Desai
,
T.
,
Gao
,
F.
,
Tang
,
X.
,
Palacios
,
T.
,
Shin
,
S.
, and
Kaviany
,
M.
,
2011
, “
Die Level Thermal Storage for Improved Cooling of Pulsed Devices
,”
27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, IEEE
,
San Jose, CA
, Mar. 20–24, pp.
193
197
.10.1109/STHERM.2011.5767199
77.
Soupremanien
,
U.
,
Szambolics
,
H.
,
Quenard
,
S.
,
Bouchut
,
P.
,
Roumanie
,
M.
,
Bottazzini
,
R.
, and
Dunoyer
,
N.
,
2016
, “
Integration of Metallic Phase Change Material in Power Electronics
,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), IEEE,
Las Vegas, NV
, May 31–June 3, pp.
125
133
.10.1109/ITHERM.2016.7517539
78.
Gonzalez-Nino
,
D.
,
Boteler
,
L. M.
,
Ibitayo
,
D.
,
Jankowski
,
N. R.
,
Urciuoli
,
D.
,
Kierzewski
,
I. M.
, and
Quintero
,
P. O.
,
2018
, “
Experimental Evaluation of Metallic Phase Change Materials for Thermal Transient Mitigation
,”
Int. J. Heat Mass Transfer
,
116
, pp.
512
519
.10.1016/j.ijheatmasstransfer.2017.09.039
79.
Bar-Cohen
,
A.
, and
Wang
,
P.
,
2009
, “
On-Chip Hot Spot Remediation With Miniaturized Thermoelectric Coolers
,”
Microgravity Sci. Technol.
,
21
(
S1
), pp.
351
359
.10.1007/s12217-009-9162-4
80.
Green
,
C. E.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2012
, “
Dynamic Thermal Management of High Heat Flux Devices Using Embedded Solid-Liquid Phase Change Materials and Solid State Coolers
,”
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 30–June 1, pp.
853
862
.10.1109/ITHERM.2012.6231516
81.
Boteler
,
L.
,
Berman
,
M.
,
Miner
,
S.
, and
Fish
,
M.
, “
ARL ParaPower
,” U.S. Army Research Laboratory, Adelphi, MD, accessed Jan. 29, 2020, https://github.com/USArmyResearchLab/ParaPower
82.
Boteler
,
L.
, and
Smith
,
A.
,
2013
, “
3D Thermal Resistance Network Method for the Design of Highly Integrated Packages
,”
ASME
Paper No. HT2013-17575.10.1115/HT2013-17575
83.
Boteler
,
L. M.
, and
Miner
,
S. M.
,
2017
, “
Power Packaging Thermal and Stress Model for Quick Parametric Analyses
,”
ASME
Paper No.
IPACK2017-74130. 10.1115/IPACK2017-74130
84.
Boteler
,
L. M.
, and
Miner
,
S. M.
,
2018
, “
Comparison of Thermal and Stress Analysis Results for a High Voltage Module Using FEA and a Quick Parametric Analysis Tool
,”
ASME Paper No.
IPACK2018-8394.10.1115/IPACK2018-8394
85.
Deckard
,
M.
,
Shamberger
,
P.
,
Fish
,
M.
,
Berman
,
M.
,
Wang
,
J.
, and
Boteler
,
L.
,
2019
, “
Convergence and Validation in ParaPower: A Design Tool for Phase Change Materials in Electronics Packaging
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
,
Las Vegas, NV
, May 28–31, pp. 878–885.10.1109/ITHERM.2019.8757334
You do not currently have access to this content.