Abstract

In an era of ever-growing digitalization, the absorbed power of processing units is becoming an actual challenge for cooling systems. The effectiveness is imperative, but compactness and passiveness are driving factors in the design as well. The goal of this paper is twofold: (1) to present a detailed experimental campaign on a thermosyphon system for high-heat-load electronics and (2) to propose a model of the thermosyphon system using a Machine Learning approach. The thermosyphon system is composed of a microchannel evaporator plate directly attached to the heat-generating device and an air-cooled multiport condenser. The height between the evaporator and condenser inlets is 12 cm. The condenser is also proposed in two solutions: the first one has a footprint heat exchange area of 180 × 120 mm2, which allows a single fan's placement; the second one has a footprint area of 240 × 120 mm2, allowing the placement of two fans. The working fluid used in the system is R1234ze(E) with different charges. The experimental results show that the single-fan condenser reached a maximum heat rejection of 330 W, corresponding to a heat flux of 21.9 W/cm2. The double-fan condenser bore a maximum heat rejection of 570 W (37.7 W/cm2). The model, constructed purely via a machine learning tool, shows a satisfactory agreement between experimental and predicted data.

References

1.
Sarno
,
C.
,
Tantolin
,
C.
,
Hodot
,
R.
,
Maydanik
,
Y.
, and
Vershinin
,
S.
,
2013
, “
Loop Thermosyphon Thermal Management of the Avionics of an In-Flight Entertainment System
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
764
769
.10.1016/j.applthermaleng.2012.10.012
2.
Oliveira
,
J. L. G.
,
Tecchio
,
C.
,
Paiva
,
K. V.
,
Mantelli
,
M. B. H.
,
Gandolfi
,
R.
, and
Ribeiro
,
L. G. S.
,
2016
, “
In-Flight Testing of Loop Thermosyphons for Aircraft Cooling
,”
Appl. Therm. Eng.
,
98
, pp.
144
156
.10.1016/j.applthermaleng.2015.12.008
3.
Lamaison
,
N.
,
Ong
,
C. L.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2017
, “
Two-Phase Mini-Thermosyphon Electronics Cooling: Dynamic Modeling, Experimental Validation and Application to 2 U Servers
,”
Appl. Therm. Eng.
,
110
, pp.
481
494
.10.1016/j.applthermaleng.2016.08.198
4.
Louahlia-Gualous
,
H.
,
Le Masson
,
S.
, and
Chahed
,
A.
,
2017
, “
An Experimental Study of Evaporation and Condensation Heat Transfer Coefficients for Looped Thermosyphon
,”
Appl. Therm. Eng.
,
110
, pp.
931
940
.10.1016/j.applthermaleng.2016.08.111
5.
Cataldo
,
F.
, and
Thome
,
J. R.
,
2017
, “
Experimental Evaluation of the Thermal Performances of a Thermosyphon Cooling System Rejecting Heat by Natural and Forced Convection
,”
Appl. Therm. Eng.
,
127
, pp.
1404
1415
.10.1016/j.applthermaleng.2017.08.166
6.
Cataldo
,
F.
, and
Thome
,
J. R.
, June
2018
, “
Experimental Performance of a Completely Passive Thermosyphon Cooling System Rejecting Heat by Natural Convection Using the Working Fluids R1234ze, R1234yf, and R134a
,”
ASME J. Electron. Packag.
,
140
(
2
), p.
021002
.10.1115/1.4039706
7.
Cataldo
,
F.
, and
Thome
,
J. R.
,
2019
, “
Experimental Performance of Completely Passive Single and Recirculating Loop Thermosyphon Cooling Systems Using Low GWP R1234ze and R1234yf
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
1180
1189
.10.1109/ITHERM.2019.8757374
8.
Cao
,
J.
,
Chen
,
C.
,
Su
,
Y.
,
Leung
,
M. K. H.
,
Bottarelli
,
M.
, and
Pei
,
G.
,
2019
, “
Experimental Study on the Temperature Management Behaviours of a Controllable Loop Thermosyphon
,”
Energy Convers. Manage.
,
195
, pp.
436
446
.10.1016/j.enconman.2019.05.031
9.
Junior
,
A. A. M.
, and
Mantelli
,
M. B. H.
,
2019
, “
Thermal Performance of a Novel Flat Thermosyphon for Avionics Thermal Management
,”
Energy Convers. Manage.
,
202
, p.
112219
.10.1016/j.enconman.2019.112219
10.
Robinson
,
A. J.
,
Colenbrander
,
J.
,
Byrne
,
G.
,
Burke
,
P.
,
McEvoy
,
J.
, and
Kempers
,
R.
,
2020
, “
Passive Two-Phase Cooling of Air Circuit Breakers in Data Center Power Distribution Systems
,”
Int. J. Electr. Power Energy Syst.
,
121
, p.
106138
.10.1016/j.ijepes.2020.106138
11.
Amalfi
,
R. L.
,
Cataldo
,
F.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2020
, “
Experimental Characterization of a Server-Level Thermosyphon for High-Heat Flux Dissipations
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
402
409
.10.1109/ITherm45881.2020.9190186
12.
Cataldo
,
F.
,
Amalfi
,
R. L.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2020
, “
Implementation of Passive Two-Phase Cooling to an Entire Server Rack
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
396
401
.10.1109/ITherm45881.2020.9190327
13.
Albertsen
,
B.
, and
Schmitz
,
G.
,
2021
, “
Experimental Parameter Studies on a Two-Phase Loop Thermosyphon Cooling System With R1233zd(E) and R1224 yd(Z)
,”
Int. J. Refrig.
, epub.10.1016/j.ijrefrig.2021.07.036
14.
Liu
,
Y.
,
Li
,
Z.
,
Li
,
Y.
,
Jiang
,
Y.
, and
Tang
,
D.
,
2019
, “
Heat Transfer and Instability Characteristics of a Loop Thermosyphon With Wide Range of Filling Ratios
,”
Appl. Therm. Eng.
,
151
, pp.
262
271
.10.1016/j.applthermaleng.2019.02.031
15.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2009
, “
Instability Phenomena in a Two-Phase Microchannel Thermosyphon
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1701
1708
.10.1016/j.ijheatmasstransfer.2008.10.005
16.
Chen
,
X.
,
Gao
,
P.
,
Tan
,
S.
,
Yu
,
Z.
, and
Chen
,
C.
,
2018
, “
An Experimental Investigation of Flow Boiling Instability in a Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1125
1134
.10.1016/j.ijheatmasstransfer.2017.10.076
You do not currently have access to this content.