Abstract

Printed electronics (PEs) have attracted attention for the fabrication of microscale electronic circuits. PEs use conductive inks which include metal nanoparticles. The conductive ink can be printed on flexible substrates for wearable devices using ink-jet printers and roll-to-roll methods. With the scaling down of electric devices, the current density and Joule heating in the device lines increase, and electromigration (EM) damage becomes significant. EM is a transportation phenomenon of metallic atoms caused by the electron wind under high-density current. Reducing the EM damage is extremely important to enhance the device reliability. With the progress in miniaturization of the metal nanoparticle ink lines, EM problem needs to be solved for ensuring the reliability of these lines. We know that the formation of aggregates and cathode damages occur due to a current loading. The diffusion path of atoms due to the EM has not been identified under the high-density current loading. In this study, a high-density electric current loading was applied to an Ag nanoparticle line. The line specimens were prepared using a lift-off method. After the current loading tests, observations were conducted using a laser microscope and scanning electron microscope. A local decrease in the line thickness and scale-shaped slit-like voids were observed due to the high-density current loading. Moreover, the microstructure of the line was modified by enlarging the Ag grain. From the results, we identified that a dominant diffusion occurred at the Ag grain boundary due to the EM.

References

1.
Jochem
,
K. S.
,
Suszynski
,
W. J.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2018
, “
High-Resolution, High-Aspect-Ratio Printed and Plated Metal Conductors Utilizing Roll-to-Roll Microscale UV Imprinting With Prototype Imprinting Stamps
,”
Ind. Eng. Chem. Res.
,
57
(
48
), pp.
16335
16346
.10.1021/acs.iecr.8b03619
2.
Jabari
,
E.
, and
Toyserkani
,
E.
,
2015
, “
Micro-Scale Aerosol-Jet Printing of Graphene Interconnects
,”
Carbon
,
91
, pp.
321
329
.10.1016/j.carbon.2015.04.094
3.
Choi
,
Y.
,
Seong
,
K. D.
, and
Piao
,
Y.
,
2019
, “
Metal-Organic Decomposition Ink for Printed Electronics
,”
Adv. Mater. Interfaces
,
6
(
20
), p.
1901002
.10.1002/admi.201901002
4.
Kawahara
,
Y.
,
Hodges
,
S.
,
Cook
,
B. S.
,
Zhang
,
C.
, and
Abowd
,
G. D.
,
2013
, “
Instant Inkjet Circuits: Lab-Based Inkjet Printing to Support Rapid Prototyping of UbiComp Devices
,”
UbiCamp
,
13
, pp.
363
372
.10.1145/2493432.2493486
5.
Gao
,
M.
,
Li
,
L.
, and
Song
,
Y.
,
2017
, “
Inkjet Printing Wearable Electronic Devices
,”
J. Mater. Chem. C
,
5
(
12
), pp.
2971
2993
.10.1039/C7TC00038C
6.
Huang
,
T. T.
, and
Wu
,
W.
,
2019
, “
Scalable Nanomanufacturing of Inkjet-Printed Wearable Energy Storage Devices
,”
J. Mater. Chem. A
,
7
(
41
), pp.
23280
23300
.10.1039/C9TA05239A
7.
A-Khalaf
,
J.
,
Saraireh
,
R.
,
Eisa
,
S.
, and
A-Halhouli
,
A.
,
2018
, “
Experimental Characterization of Inkjet-Printed Stretchable Circuits for Wearable Sensor Applications
,”
Sensors
,
18
(
10
), p.
3476
.10.3390/s18103476
8.
Hong
,
S.
,
Lee
,
J.
,
Do
,
K.
,
Lee
,
M.
,
Kim
,
J. H.
,
Lee
,
S.
, and
Kim
,
D. H.
,
2017
, “
Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices
,”
Adv. Funct. Mater.
,
27
(
48
), p.
1704353
.10.1002/adfm.201704353
9.
Sim
,
S. M.
,
Lee
,
Y.
,
Kang
,
H. L.
,
Shin
,
K. Y.
,
Lee
,
S. H.
, and
Kim
,
J. M.
,
2017
, “
RF Performance of Ink-Jet Printed Microstrip Lines on Rigid and Flexible Substrates
,”
Microelectron. Eng.
,
168
(
25
), pp.
82
88
.10.1016/j.mee.2016.11.011
10.
Seo
,
J. H.
,
Zhang
,
Y.
,
Yuan
,
H. C.
,
Wang
,
Y.
,
Zhou
,
W.
,
Ma
,
J.
,
Ma
,
Z.
, and
Qin
,
G.
,
2013
, “
Investigation of Various Mechanical Bending Strains on Characteristics of Flexible Monograinline Silicon Nanomembrane Diodes on a Plastic Substrate
,”
Microelectron. Eng.
,
110
, pp.
40
43
.10.1016/j.mee.2013.05.001
11.
Ohsawa
,
M.
, and
Hashimoto
,
N.
,
2019
, “
Bending Reliability of Flexible Transparent Electrode of Gravure Offset Printed Invisible Ag-Grid Laminated With Conductive Polymer
,”
Microelectron. Reliab.
,
98
, pp.
124
130
.10.1016/j.microrel.2019.05.009
12.
Skylar-Scott
,
M. A. S.
,
Gunasekaran
,
S.
, and
Lewis
,
J. A.
,
2016
, “
Laser-Assisted Direct Ink Writing of Planar and 3D Metal Architectures
,”
PNAS
,
113
(
22
), pp.
6137
6142
.10.1073/pnas.1525131113
13.
Kao
,
H. L.
,
Cho
,
C. L.
,
Chang
,
L. C.
, and
Wu
,
Y. H.
,
2015
, “
Inkjet-Printed Ag Film on Multilayer Liquid Grain Polymer for Fabricating a Miniature Stub-Loaded Bandpass Filter
,”
Thin Solid Films
,
584
, pp.
198
203
.10.1016/j.tsf.2015.01.016
14.
Zhao
,
Z.
,
Mamidanna
,
A.
,
Lefky
,
C.
,
Hildreth
,
O.
, and
Alford
,
T. L.
,
2016
, “
A Percolative Approach to Investigate Electromigration Failure in Printed Ag Structures
,”
J. Appl. Phys.
,
120
(
12
), p.
125104
.10.1063/1.4963755
15.
Xu
,
X.
,
Lu
,
Y.
,
Tang
,
C.
,
Sun
,
Q.
, and
Huang
,
F.
,
2018
, “
A Simple Technique to Prevent Electromigration Damage in Printed Ag Thin Wires
,”
Mater. Lett.
,
225
, pp.
21
23
.10.1016/j.matlet.2018.04.067
16.
Sun
,
Q.
,
Lu
,
Y.
,
Tang
,
C.
,
Song
,
H.
,
Li
,
C.
, and
Zuo
,
C.
,
2019
, “
Current-Induced Changes of Surface Morphology in Printed Ag Thin Wires
,”
Materials
,
12
(
20
), p.
3288
.10.3390/ma12203288
17.
Blech
,
I. A.
, and
Meieran
,
E. S.
,
1969
, “
Electromigration in Thin Al Films
,”
J. Appl. Phys.
,
40
(
2
), pp.
485
491
.10.1063/1.1657425
18.
Sasagawa
,
K.
,
Naito
,
K.
,
Kimura
,
H.
,
Saka
,
M.
, and
Abé
,
H.
,
2000
, “
Experimental Verification of Prediction Method for Electromigration Failure of Polygrainline Lines
,”
J. Appl. Phys.
,
87
(
6
), pp.
2785
2791
.10.1063/1.372257
19.
Adhikari
,
A.
, and
Roy
,
A.
,
2018
, “
Experimenting and Modeling of Catastrophic Failure in Electromigration Induced Resistance Degradation for Deep Submicron Dual-Damascene Copper
,”
Solid State Electron.
,
148
, pp.
7
15
.10.1016/j.sse.2018.07.002
20.
Sasagawa
,
K.
,
Nakamura
,
N.
,
Saka
,
M.
, and
Abé
,
H.
,
1998
, “
A New Approach to Calculate Atomic Flux Divergence by Electromigration
,”
ASME J. Electron. Packag.
,
120
(
4
), pp.
360
366
.10.1115/1.2792647
21.
Fu
,
C. M.
,
Tan
,
C. M.
,
Wu
,
S. H.
, and
Yao
,
H. B.
,
2010
, “
Width Dependence of the Effectiveness of Reservoir Length in Improving Electromigration for Cu/Low-k Interconnects
,”
Microelectron. Reliab.
,
50
(
9–11
), pp.
1332
1335
.10.1016/j.microrel.2010.07.133
22.
Bigalke
,
S.
, and
Lienig
,
J.
,
2020
, “
Avoidance vs. Repair: New Approaches to Increasing Electromigration Robustness in VLSI Routing
,”
Integration
,
75
, pp.
189
198
. [.10.1016/j.vlsi.2020.04.009
23.
Sasagawa
,
K.
,
Naito
,
K.
,
Saka
,
M.
, and
Abé
,
H.
,
1999
, “
A Method to Predict Electromigration Failure of Metal Lines
,”
J. Appl. Phys.
,
86
(
11
), pp.
6043
6045
.10.1063/1.371652
24.
Park
,
J. U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
,
Georgiadis
,
J. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.10.1038/nmat1974
25.
Yang
,
S. M.
,
Lee
,
Y. S.
,
Jang
,
Y.
,
Byun
,
D.
, and
Choa
,
S. H.
,
2016
, “
Electromechanical Reliability of a Flexible Metal-Grid Transparent Electrode Prepared by Electrohydrodynamic (EHD) Jet Printing
,”
Microelectron. Reliab.
,
65
, pp.
151
159
.10.1016/j.microrel.2016.07.146
26.
Cheng
,
H. C.
,
Chen
,
Y. W.
,
Chen
,
W. H.
,
Lu
,
S. T.
, and
Lin
,
S. M.
,
2018
, “
Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing
,”
J. Electron. Mater.
,
47
(
3
), pp.
1832
1846
.10.1007/s11664-017-5967-x
27.
Saito
,
D.
,
Sasagawa
,
K.
,
Moriwaki
,
T.
, and
Fujisaki
,
K.
,
2020
, “
Electromigration Damage of Flexible Electronic Lines Printed With Ag Nanoparticle Ink
,”
ASME J. Electron. Packag.
,
143
(
3
), p.
031107
.10.1115/1.4046849
28.
Hummel
,
R. E.
, and
Geier
,
H. J.
,
1975
, “
Activation Energy for Electrotransport in Thin Silver and Gold Films
,”
Thin Solid Films
,
25
(
2
), pp.
335
342
.10.1016/0040-6090(75)90053-X
29.
Moriwaki
,
T.
,
Sasagawa
,
K.
,
Sugawara
,
Y.
,
Fujisaki
,
K.
, and
Mineta
,
T.
,
2019
, “
Anode-Side Failure of a Cuprous Oxide Semiconductor Caused by High-Density Current Loading
,”
J. Electron. Mater.
,
48
(
11
), pp.
6849
6953
.10.1007/s11664-019-07540-9
30.
Park
,
J. Y.
,
Moon
,
D. I.
,
Seol
,
M. L.
,
Jeon
,
C. H.
,
Jeon
,
G. J.
,
Han
,
J. W.
,
Kim
,
C. K.
,
Park
,
S. J.
,
Lee
,
H. C.
, and
Choi
,
Y. K.
,
2016
, “
Controllable Electrical and Physical Breakdown of Poly-Crystalline Silicon Nanowires by Thermally Assisted Electromigration
,”
Sci. Rep.
,
6
, p.
19314
.10.1038/srep19314
You do not currently have access to this content.