Abstract

This paper focuses on the response of printed hybrid electronic (PHE) assemblies with polymeric substrates and additively manufactured sintered silver electrical traces subject to extreme mechanical shocks (up to 100,000 g) and high temperatures (up to 150 °C). The substrates are hemispherical domes of injection-molded polycarbonate and polysulfone thermoplastics. Trace deposition onto the domes is accomplished by a novel process that combines conventional milling with extrusion printing to recess silver traces and dielectric insulation within the surface of the substrate. Mechanical shock testing is performed using an accelerated-fall drop tower equipped with a dual mass shock amplifier (DMSA) able to generate accelerations from 10,000 g up to 100,000 g with pulse durations of ∼0.05–0.1 ms and impact velocities of 6.5–20.5 m/s. Specimen performance is characterized by electrical and physical testing before and after testing. While polycarbonate domes survive multiple drops at all acceleration levels and temperatures, they are sensitive to heat and susceptible to warping and structural deformation at 150 °C which can compromise trace performance. Polysulfone domes can survive these temperatures without issue, but are less shock resistant and only survive 3–4 drops at 100,000 g (compared to 30+ for polycarbonate domes). Trace resistance is used as a metric to assess trace performance. All traces exhibit progressive long-term degradation over the course of multiple shocks, followed by instantaneous discontinuity during the final shock event. Trace failure (defined as the doubling of static trace resistance) occurs at ∼105–106 J/kg cumulative impact energy for all acceleration levels.

References

1.
JEDEC Solid State Technology Association
,
2016
, “
Board Level Drop Test Method of Components for Handheld Electronic Products
,” JEDEC, Arlington, VA, Standard No.
JESD22-B111A
.https://www.jedec.org/standards-documents/docs/jesd-22-b111
2.
Berman
,
M.
,
Wilkerson
,
S.
,
Hopkins
,
D.
,
Gazonas
,
G.
,
Frydman
,
A.
, and
Carlucci
,
D.
,
2001
, “
Methodology for Hardening Electronic Components for Gun Launch Survival
,”
19th International Symposium of Ballistics
, Interlaken, Switzerland, May 7–11, pp.
387
394
.https://www.researchgate.net/publication/266885951_METHODOLOGY_FOR_HARDENING_ELECTRONIC_COMPONENTS_FOR_GUN_LAUNCH_SURVIVAL
3.
Wong
,
E. H.
,
Seah
,
S. K. W.
, and
Shim
,
V. P. W.
,
2008
, “
A Review of Board Level Solder Joints for Mobile Applications
,”
Microelectron. Reliab.
,
48
(
11–12
), pp.
1747
1758
.10.1016/j.microrel.2008.08.006
4.
Christou
,
A.
,
2006
, “
Reliability of High Temperature Electronics
,”
The Center for Risk and Reliability
, 2nd ed.,
University of Maryland
,
College Park, MD
.https://books.google.co.in/books?hl=en&lr=&id=tH0yvDAS678C&oi=fnd&pg=PA1&dq=Reliability+of+High+Temperature+Electronics&ots=fbUJB_ hik&sig=13fcJ6weHzw0f_c8iiUl9Usfj4c#v=onepage&q&f=false
5.
Mattila
,
T. T.
,
James
,
R. J.
,
Nguyen
,
L.
, and
Kivilahti
,
J. K.
,
2007
, “
Effect of Temperature on the Drop Reliability of Wafer-Level Chip Scale Packaged Electronics Assemblies
,”
57th Electronic Components and Technology Conference
, Sparks, NV, May 29–June 1, pp.
940
945
.10.1109/ECTC.2007.373909
6.
Richards
,
H.
,
Abusalma
,
H.
,
Dasgupta
,
A.
,
Yu
,
J.
,
Bujanda
,
A.
, and
Tsang
,
H.
,
2023
, “
Survivability and Reliability Testing and Modeling of Printed Hybrid Electronic (PHE) Assemblies Subject to Extreme Acceleration Levels
,”
ASME
Paper No. IPACK2023-111895.10.1115/IPACK2023-111895
7.
Valentine
,
A. D.
,
Busbee
,
T. A.
,
Boley
,
J. W.
,
Raney
,
J. R.
,
Chortos
,
A.
,
Kotikian
,
A.
,
Berrigan
,
J. D.
,
Durstock
,
M. F.
, and
Lewis
,
J. A.
,
2017
, “
Hybrid 3D Printing of Soft Electronics
,”
Adv. Mater.
,
29
(
40
), pp.
1
8
.10.1002/adma.201703817
8.
Hines
,
D. R.
,
Gu
,
Y.
,
Martin
,
A. A.
,
Li
,
P.
,
Fleischer
,
J.
,
Clough-Paez
,
A.
,
Stackhouse
,
G.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2021
, “
Considerations of Aerosol-Jet Printing for the Fabrication of Printed Hybrid Electronic Circuits
,”
Addit. Manuf.
,
47
, p.
102325
.10.1016/j.addma.2021.102325
9.
Lakshminarayanan
,
V.
, and
Sriraam
,
N.
,
2014
, “
The Effect of Temperature on the Reliability of Electronic Components
,” IEEE International Conference on Electronics, Computing and Communication Technologies (
CONECCT
), Bangalore, India, Jan. 6–7, pp.
1
6
.10.1109/CONECCT.2014.6740182
10.
Lall
,
P.
,
Zhang
,
D.
,
Yadav
,
V.
, and
Locker
,
D.
,
2016
, “
High Strain Rate Constitutive Behavior of SAC105 and SAC305 Leadfree Solder During Operation at High Temperature
,”
Microelectron. Reliab.
,
62
, pp.
4
17
.10.1016/j.microrel.2016.03.014
11.
Abusalma
,
H.
,
Richards
,
H.
,
Dasgupta
,
A.
,
Bujanda
,
A.
,
Yu
,
J.
, and
Tsang
,
H.
,
2023
, “
Extreme Drop Durability of Sintered Silver Traces Printed With Extrusion and Aerosol Jet Processes
,”
ASME
Paper No. IPACK2023-111312.10.1115/IPACK2023-111312
12.
Yuan
,
G.
,
Yang
,
X.
, and
Shu
,
S.
,
2009
, “
Effects of Strain Rate and Temperature on Mechanical Behavior of SACB Solder Alloy
,”
International Conference on Electronic Packaging Technology & High Density Packaging
, Beijing, China, Aug. 10–13, pp.
1186
1189
.10.1109/ICEPT.2009.5270616
13.
Shimizu
,
K.
,
Nakanishi
,
T.
,
Karasawa
,
K.
,
Hashimoto
,
K.
, and
Niwa
,
K.
,
1995
, “
Solder Joint Reliability of Indium-Alloy Interconnection
,”
J. Electron. Mater.
,
24
(
1
), pp.
39
45
.10.1007/BF02659725
14.
Dušek
,
K.
,
Bušek
,
D.
,
Veselý
,
P.
,
Pražanová
,
A.
,
Plaček
,
M.
, and
Re
,
J. D.
,
2022
, “
Understanding the Effect of Reflow Profile on the Metallurgical Properties of Tin–Bismuth Solders
,”
Metals
,
12
(
1
), pp.
121
143
.10.3390/met12010121
15.
Tomlinson
,
W. J.
, and
Collier
,
I.
,
1987
, “
The Mechanical Properties and Microstructures of Copper and Brass Joints Soldered With Eutectic Tin-Bismuth Solder
,”
J. Mater. Sci.
,
22
(
5
), pp.
1835
1839
.10.1007/BF01132413
16.
Khazaka
,
R.
,
Mendizabal
,
L.
, and
Henry
,
D.
,
2014
, “
Review on Joint Shear Strength of Nano-Silver Paste and Its Long-Term High Temperature Reliability
,”
J. Electron. Mater.
,
43
(
7
), pp.
2459
2466
.10.1007/s11664-014-3202-6
17.
Seah
,
S. K. W.
,
Wong
,
E. H.
,
Mai
,
Y. W.
,
Rajoo
,
R.
, and
Lim
,
C. T.
,
2006
, “
Failure Mechanisms of Interconnections in Drop Impact
,”
56th Electronic Components and Technology Conference
, San Diego, CA, May 30–June 2, p.
9
.10.1109/ECTC.2006.1645852
18.
Wong
,
E. H.
,
Seah
,
S. K. W.
,
van Driel
,
W. D.
,
Caers
,
J. F. J. M.
,
Owens
,
N.
, and
Lai
,
Y. S.
,
2009
, “
Advances in the Drop-Impact Reliability of Solder Joints for Mobile Applications
,”
Microelectron. Reliab.
,
49
(
2
), pp.
139
149
.10.1016/j.microrel.2008.12.001
19.
Wang
,
Y. Q.
,
Low
,
K. H.
,
Che
,
F. X.
,
Pang
,
H. L. J.
, and
Yeo
,
S. P.
,
2003
, “
Modeling and Simulation of Printed Circuit Board Drop Test
,”
Fifth Electronics Packaging Technology Conference
, Singapore, Dec. 12, pp.
263
268
.10.1109/EPTC.2003.1271526
20.
Zhao
,
J.
, and
Garner
,
L. J.
,
2006
, “
Mechanical Modeling and Analysis of Board Level Drop Test of Electronic Package
,”
56th Electronic Components and Technology Conference
, San Diego, CA, May 30–June 2, pp.
1
7
.10.1109/ECTC.2006.1645683
21.
Lall
,
P.
,
Gupte
,
S.
,
Choudhary
,
P.
, and
Suhling
,
J.
,
2007
, “
Solder Joint Reliability in Electronics Under Shock and Vibration Using Explicit Finite-Element Submodeling
,”
IEEE Trans. Electron. Packag. Manuf.
,
30
(
1
), pp.
74
83
.10.1109/TEPM.2006.890642
22.
Lall
,
P.
,
Panchagade
,
D. R.
,
Choudhary
,
P.
,
Gupte
,
S.
, and
Suhling
,
J.
,
2008
, “
Failure-Envelope Approach to Modeling Shock and Vibration Survivability of Electronic and MEMS Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
104
113
.10.1109/TCAPT.2008.916804
23.
Lall
,
P.
,
Shantaram
,
S.
,
Suhling
,
J.
, and
Locker
,
D.
,
2013
, “
Effect of Aging on the High Strain Rate Mechanical Properties of SAC105 and SAC305 Leadfree Alloys
,”
63rd Electronic Components and Technology Conference
, Las Vegas, NV, May 28–31, pp.
1277
1293
.10.1109/ECTC.2013.6575738
24.
Mattila
,
T. T.
,
Kaloinen
,
E.
,
Syed
,
A.
, and
Kivilahti
,
J. K.
,
2007
, “
Reliability of SnAgCu Interconnections With Minor Additions of Ni or Bi Under Mechanical Shock Loading at Different Temperatures
,”
57th Electronic Components and Technology Conference
, Sparks, NV, May 29–June 1, pp.
381
390
.10.1109/ECTC.2007.373826
25.
Ribas
,
M.
,
Chegudi
,
S.
,
Kumar
,
A.
,
Pandher
,
R.
,
Raut
,
R.
,
Mukherjee
,
S.
,
Sarkar
,
S.
, and
Singh
,
B.
,
2013
, “
Development of Low-Temperature Drop Shock Resistant Solder Alloys for Handheld Devices
,”
15th Electronics Packaging Technology Conference
, Singapore, Dec. 11–13, pp.
48
52
.10.1109/EPTC.2013.6745682
26.
Bai
,
J.
, and
Lu
,
G.
,
2006
, “
Thermomechanical Reliability of Low-Temperature Sintered Silver Die Attached SiC Power Device Assembly
,”
IEEE Trans. Device Mater. Reliab.
,
6
(
3
), pp.
436
441
.10.1109/TDMR.2006.882196
You do not currently have access to this content.