Abstract

With the development of semiconductor technology, traditional flip-chip bonding has been difficult to meet the high-density, high-reliability requirements of advanced packaging technology. As an advanced three-dimensional stacked packaging technology, Cu-SiO2 hybrid bonding technology can achieve high-density electrical interconnection without bumps, which expands the transmission performance and interconnection density of chips greatly. However, the investigation on Cu-SiO2 bonding is far from mature, and many researchers are studying Cu-SiO2 bonding passionately. There are many technologies that use different bonding mechanisms to achieve Cu-SiO2 bonding, which will affect the bonding strength directly. We review the mechanism and research progress of Cu-Cu bonding, SiO2-SiO2 bonding. What is more, we summarize the comparison of bonding conditions and bonding strength of various methods furtherly. According to the bonding mechanism, we propose some economical solutions for low-temperature Cu-SiO2 hybrid bonding, with the aim of providing certain references for the further development of advanced semiconductor packaging.

References

1.
Arnaud
,
L.
,
Karam
,
C.
,
Bresson
,
N.
,
Dubarry
,
C.
,
Borel
,
S.
,
Assous
,
M.
,
Mauguen
,
G.
,
Fournel
,
F.
,
Gottardi
,
M.
,
Mourier
,
T.
,
Cheramy
,
S.
, and
Servant
,
F.
,
2020
, “
Three-Dimensional Hybrid Bonding Integration Challenges and Solutions Toward Multi-Wafer Stacking
,”
MRS Commun.
,
10
(
4
), pp.
549
557
.10.1557/mrc.2020.77
2.
Luisier
,
M.
,
Lundatorm
,
M.
,
Antoniadis
,
D. A.
, and
Bokor
,
J.
,
2011
, “
Ultimate Device Scaling: Intrinsic Performance Comparisons of Carbon-Based, InGaAs, and Si Field-Effect Transistors for 5 nm Gate Length
,” International Electron Devices Meeting (
IEDM
), Washington, DC, Dec. 5–7, pp.
251
254
.10.1109/IEDM.2011.6131531
3.
Sharma
,
G.
,
Rao
,
V. S.
,
Kumar
,
A.
,
Ying
,
L. Y.
,
Houe
,
K. C.
,
Lim
,
S.
,
Sekhar
,
V. N.
,
Rajoo
,
R.
,
Kripesh
,
V.
, and
Lau
,
J. H.
,
2011
, “
Design and Development of Multi-Die Laterally Placed and Vertically Stacked Embedded Micro-Wafer-Level Packages
,”
IEEE Trans. Compon. Packag. Manufact. Technol.
,
1
(
1
), pp.
52
59
.10.1109/TCPMT.2010.2101470
4.
Robertazzi
,
R.
,
Scheurman
,
M.
,
Wordeman
,
M.
,
Tian
,
S.
, and
Tyberg
,
C.
,
2017
, “
Analytical Test of 3D Integrated Circuits
,” IEEE International Test Conference (
ITC
), Fort Worth, TX, Oct. 31–Nov. 2, pp.
1
10
.10.1109/TEST.2017.8242067
5.
Kim
,
J. S.
,
Jung
,
S. B.
, and
Yoon
,
J. W.
,
2021
, “
Effect of Ni (P) thickness in Au/Pd/Ni (P) surface Finish on the Electrical Reliability of Sn-3.0Ag-0.5Cu Solder Joints During Current-Stressing
,”
J. Alloys Compd.
,
850
, p.
156729
.10.1016/j.jallcom.2020.156729
6.
William
,
S.
,
1962
, “
Semiconductive Wafer and Method of Making the Same
,” U.S. Patent No.
US3044909
.https://patents.google.com/patent/US3044909A/en
7.
Moffat
,
T. P.
, and
Josell
,
D.
,
2012
, “
Extreme Bottom-Up Superfilling of Through-Silicon-Vias by Damascene Processing: Suppressor Disruption, Positive Feedback and Turning Patterns
,”
J. Electro Chem. Soc.
,
159
(
4
), pp.
D208
D216
.10.1149/2.040204jes
8.
Chang
,
H. H.
,
Shih
,
Y. C.
,
Hsiao
,
Z. C.
,
Chiang
,
C. W.
,
Chen
,
Y. H.
, and
Chiang
,
K. N.
,
2009
, “
3D Stacked Chip Technology Using Bottom-Up Electroplated TSVs
,” IEEE 59th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 26–29, pp.
1177
1184
.10.1109/ECTC.2009.5074161
9.
Tian
,
Y.
,
Fang
,
H.
,
Ren
,
N.
,
Zhao
,
Y. T.
,
Chen
,
B. L.
,
Wu
,
F. S.
, and
Paik
,
K. W.
,
2020
, “
Reliable Single-Phase Micro-Joints With High Melting Point for 3D TSV Chip Stacking
,”
J. Alloys Compd.
,
828
, p.
154468
.10.1016/j.jallcom.2020.154468
10.
Huylenbroeck
,
S. V.
,
Li
,
Y. L.
,
Heylen
,
N.
,
Croes
,
K.
,
Beyer
,
G.
,
Beyne
,
E.
,
Brouri
,
M.
,
Gopinath
,
S.
,
Nalla
,
P.
,
Thorum
,
M.
,
Meshram
,
P.
,
Anjos
,
D. M.
, and
Yu
,
J. Y.
,
2015
, “
Advanced Metallization Scheme for 3 × 50μm Via Middle TSV and Beyond
,” IEEE 65th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 26–29, pp.
66
72
.10.1109/ECTC.2015.7159573
11.
Pan
,
Y. X.
,
Li
,
F.
,
He
,
H.
,
Li
,
J. H.
, and
Zhu
,
W. H.
,
2017
, “
Effects of Dimension Parameters and Defect on TSV Thermal Behavior for 3D IC Packaging
,”
Microelectron. Reliab.
,
70
, pp.
97
102
.10.1016/j.microrel.2017.02.001
12.
Gagnard
,
X.
, and
Mourier
,
T.
,
2010
, “
Through Silicon Via: From the CMOS Imager Sensor Wafer Level Package to the 3D Integration
,”
Microelectron. Eng.
,
87
(
3
), pp.
470
476
.10.1016/j.mee.2009.05.035
13.
Khan
,
N. H.
,
Alam
,
S. M.
, and
Hassoun
,
S.
,
2011
, “
Power Delivery Design for 3-D ICs Using Different Through-Silicon Via (TSV) Technologies
,”
IEEE Trans. Very Large Scale Integration (VLSI) Syst.
,
19
(
4
), pp.
647
658
.10.1109/TVLSI.2009.2038165
14.
Wang
,
Q.
,
Wen
,
J.
,
Ravindranath
,
B.
,
O′Sullivan
,
A. W.
,
Catherall
,
D.
,
Li
,
K.
,
Wei
,
S. Y.
,
Komarov
,
S.
, and
Tai
,
Y. C.
,
2015
, “
A Compact High Resolution Flat Panel PET Detector Based on the New 4-Side Buttable MPPC for Biomedical Applications
,”
Nucl. Instrum. Methods Phys. Res. Sect.: A
,
94
, pp.
151
159
.10.1016/j.nima.2015.04.071
15.
Lau
,
J. H.
,
Zhang
,
Q. L.
,
Li
,
M.
,
Yeung
,
K. M.
,
Cheung
,
Y. M.
,
Fan
,
N.
,
Wong
,
Y. M.
,
Zahn
,
M.
, and
Koh
,
M.
,
2015
, “
Stencil Printing of Underfill for Flip Chips on Organic-Panel and Si-Wafer Substrates
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
7
), pp.
1027
1035
.10.1109/TCPMT.2015.2443841
16.
Kagawa
,
Y.
,
Fujii
,
N.
,
Aoyagi
,
K.
,
Kobayashi
,
Y.
,
Nishi
,
S.
,
Todaka
,
N.
,
Takeshita
,
S.
,
Taura
,
J.
,
Takahashi
,
H.
,
Nishimura
,
Y.
,
Tatani
,
K.
,
Kawamura
,
M.
,
Nakayama
,
H.
,
Nagano
,
T.
,
Ohno
,
K.
,
Iwamoto
,
H.
,
Kadomura
,
S.
, and
Hirayama
,
T.
,
2016
, “
Novel Stacked CMOS Image Sensor With Advanced Cu2Cu Hybrid Bonding
,” IEEE International Electron Devices Meeting (
IEDM
), San Francisco, CA, Dec. 3–7, pp.
208
211
.10.1109/IEDM.2016.7838375
17.
Kagawa
,
Y.
,
Fujii
,
N.
,
Aoyagi
,
K.
,
Kobayashi
,
Y.
,
Nishi
,
S.
,
Todaka
,
N.
,
Takeshita
,
S.
,
Taura
,
J.
,
Takahashi
,
H.
,
Nishimura
,
Y.
,
Tatani
,
K.
,
Kawamura
,
M.
,
Nakayama
,
H.
,
Ohno
,
K.
,
Iwamoto
,
H.
,
Kadomura
,
S.
, and
Hirayama
,
T.
,
2018
, “
An Advanced CuCu Hybrid Bonding for Novel Stacked CMOS Image Sensor
,” 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (
EDTM
), Kobe, Japan, Mar. 13–16, pp.
65
67
.10.1109/EDTM.2018.8421453
18.
Kagawa
,
Y.
,
Hida
,
S.
,
Kobayashi
,
Y.
,
Takahashi
,
K.
,
Miyanomae
,
S.
,
Kawamura
,
M.
,
Kawashima
,
H.
,
Yamagishi
,
H.
,
Hirano
,
T.
,
Tatani
,
K.
,
Nakayama
,
H.
,
Ohno
,
K.
,
Iwamoto
,
H.
, and
Kadamura
,
S.
,
2019
, “
The Scaling of Cu-Cu Hybrid Bonding for High Density 3D Chip Stacking
,” Electron Devices Technology and Manufacturing Conference (
EDTM
), Singapore, Mar. 12–15, pp.
297
299
.10.1109/EDTM.2019.8731186
19.
Tanida
,
K.
,
Suzuki
,
S.
,
Seo
,
T.
,
Morinaga
,
M.
,
Korogi
,
H.
,
Tetani
,
M.
,
Hamada
,
M.
,
Eto
,
R.
,
Yamashita
,
T.
,
Kato
,
Y.
,
Sato
,
N.
,
Shimizu
,
T.
,
Hanawa
,
T.
,
Kubo
,
H.
,
Ueda
,
K.
,
Ito
,
F.
,
Noguchi
,
Y.
,
Nakamura
,
M.
,
Mizukoshi
,
R.
,
Takeuchi
,
M.
,
Suzuki
,
M.
,
Niisoe
,
N.
,
Miyanaga
,
I.
,
Ikeda
,
A.
, and
Matsumoto
,
S.
,
2022
, “
Pixel Pitch Hybrid Bonding and Three Layer Stacking Technology for BSI Image Sensor
,” IEEE International Interconnect Technology Conference (
IITC
), San Jose, CA, June 27–30, pp.
5
7
.10.1109/IITC52079.2022.9881305
20.
Kim
,
T.
,
Cho
,
S.
,
Hwang
,
S. K.
,
Lee
,
K.
,
Hong
,
Y.
,
Lee
,
H.
,
Cho
,
H.
,
Moon
,
K.
,
Na
,
H.
, and
Hwang
,
K.
,
2021
, “
Multi-Stack Wafer Bonding Demonstration Utilizing Cu to Cu Hybrid Bonding and TSV Enabling Diverse 3D Integration
,” IEEE 71st Electronic Components and Technology Conference (
ECTC
), San Diego, CA, June 1–July 4, pp.
415
419
.10.1109/ECTC32696.2021.00076
21.
Chen
,
M. F.
,
Chen
,
F. C.
,
Chiou
,
W. C.
, and
Yu
,
D. C.
,
2019
, “
System on Integrated Chips (SoICTM) for 3D Heterogeneous Integration
,” IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
594
599
.10.1109/ECTC.2019.00095
22.
Chen
,
M. F.
,
Lin
,
C. S.
,
Liao
,
E. B.
,
Chiou
,
W. C.
,
Kuo
,
C. C.
,
Hu
,
C. C.
,
Tsai
,
C. H.
,
Wang
,
C. T.
, and
Yu
,
D.
,
2020
, “
SoIC for Low-Temperature, Multi-Layer 3D Memory Integration
,” IEEE 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, June 3–30, pp.
855
860
.10.1109/ECTC32862.2020.00139
23.
Yan
,
O. Y.
,
Yang
,
S. H.
,
Yin
,
D. D.
,
Huang
,
X.
,
Wang
,
Z. Q.
,
Yang
,
S. W.
,
Han
,
K.
, and
Xia
,
Z. Q.
,
2021
, “
Excellent Reliability of Xtacking™ Bonding Interface
,” IEEE International Reliability Physics Symposium (
IRPS
), Monterey, CA, Mar. 21–25, pp.
1
6
.10.1109/IRPS46558.2021.9405115
24.
Huo
,
Z. L.
,
Cheng
,
W. H.
, and
Yang
,
S.
,
2022
, “
Unleash Scaling Potential of 3D NAND With Innovative Xtacking® Architecture
,”
IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)
, Honolulu, HI, June 12–17, pp.
254
255
.10.1109/VLSITechnologyandCir46769.2022.9830285
25.
Niu
,
D. M.
,
Li
,
S. C.
,
Wang
,
Y. H.
,
Han
,
W.
,
Zhang
,
Z.
,
Guan
,
Y. J.
,
Guan
,
T. C.
,
Sun
,
F.
,
Xue
,
F.
,
Duan
,
L. D.
,
Fang
,
Y. W.
,
Zheng
,
H. Z.
,
Jiang
,
X. P.
,
Wang
,
S.
,
Zuo
,
F. G.
,
Wang
,
Y. B.
,
Yu
,
B.
,
Ren
,
Q. W.
, and
Xie
,
Y.
,
2022
, “
184QPS/W 64 Mb/mm2 3D Logic-to-DRAM Hybrid Bonding With Process-Near-Memory Engine for Recommendation System
,” IEEE International Solid—State Circuits Conference (
ISSCC
), San Francisco, CA, Feb. 20–26, pp.
1
3
.10.1109/ISSCC42614.2022.9731694
26.
Sakakibara
,
M.
,
Ogawa
,
K.
,
Sakai
,
S.
,
Tochigi
,
Y.
,
Honda
,
K.
,
Kikuchi
,
H.
,
Wada
,
T.
,
Kamikubo
,
Y.
,
Miura
,
T.
,
Nakamizo
,
M.
,
Jyo
,
N.
,
Hayashibara
,
R.
,
Miyata
,
S.
,
Yamamoto
,
S.
,
Ota
,
Y.
,
Takahashi
,
H.
,
Taura
,
T.
,
Oike
,
Y.
,
Tatani
,
K.
,
Ezaki
,
T.
, and
Hirayama
,
T.
,
2018
, “
A 6.9-μm Pixel-Pitch Back-Illuminated Global Shutter CMOS Image Sensor With Pixel-Parallel 14-Bit Subthreshold ADC
,”
IEEE J. Solid-State Circuits
,
53
(
11
), pp.
3017
3025
.10.1109/JSSC.2018.2863947
27.
Sakakibara
,
M.
,
Ogawa
,
K.
,
Sakai
,
S.
,
Tochigi
,
Y.
,
Honda
,
K.
,
Kikuchi
,
H.
,
Wada
,
T.
,
Kamikubo
,
Y.
,
Miura
,
T.
,
Nakamizo
,
M.
,
Jyo
,
N.
,
Hayashibara
,
R.
,
Furukawa
,
Y.
,
Miyata
,
S.
,
Yamamoto
,
S.
,
Ota
,
Y.
,
Takahashi
,
H.
,
Taura
,
T.
,
Oike
,
Y.
,
Tatani
,
K.
,
Nagano
,
T.
,
Ezaki
,
T.
, and
Hirayama
,
T.
,
2018
, “
A Back-Illuminated Global-Shutter CMOS Image Sensor With Pixel-Parallel 14b Subthreshold ADC
,” 2018 IEEE International Solid-State Circuits Conference (
ISSCC
), San Francisco, CA, Feb. 11–15, pp. 80–82.10.1109/ISSCC.2018.8310193
28.
Elsherbini
,
A.
,
Jun
,
K.
,
Vreeland
,
R.
,
Brezinski
,
W.
,
Niazi
,
H. K.
,
Shi
,
Y.
,
Yu
,
Q.
,
Qian
,
Z. G.
,
Xu
,
J.
,
Liff
,
S.
,
Swan
,
J.
,
Yao
,
J. M.
,
Liu
,
P. L.
,
Pelto
,
C.
,
Rami
,
S.
,
Balankutty
,
A.
,
Fischer
,
P.
, and
Turkot
,
B.
,
2021
, “
Enabling Hybrid Bonding on Intel Process
,” IEEE International Electron Devices Meeting (
IEDM
), San Francisco, CA, Dec. 11–16,
pp. 34.3.1–34.3.4.10.1109/IEDM19574.2021.9720586
29.
Lsherbini
,
A.
,
Liff
,
S.
,
Swan
,
J.
,
Jun
,
K.
,
Tiagaraj
,
S.
, and
Pasdast
,
G.
,
2021
, “
Hybrid Bonding Interconnect for Advanced Heterogeneously Integrated Processors
,” IEEE 71st Electronic Components and Technology Conference (
ECTC
), San Diego, CA, June 1–July 4, pp.
1014
1019
.10.1109/ECTC32696.2021.00166
30.
Park
,
J.
,
Lee
,
B.
,
Lee
,
H.
,
Lim
,
D.
,
Kang
,
J.
,
Cho
,
C.
,
Na
,
M.
,
Jin
,
I.
, et al.,
2022
, “
Wafer to Wafer Hybrid Bonding for DRAM Applications
,” IEEE 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31–June 3, pp.
126
129
.10.1109/ECTC51906.2022.00030
31.
Wang
,
S. Z.
,
Zhang
,
H. H.
,
Tian
,
Z. Q.
,
Liu
,
T. J.
,
Sun
,
Y. M.
,
Zhang
,
Y. X.
,
Dong
,
F.
, and
Liu
,
S.
,
2022
, “
Optimization of Cu Protrusion of Wafer-to-Wafer Hybrid Bonding for HBM Packages Application
,”
Mater. Sci. Semicond. Process.
,
152
, p.
107063
.10.1016/j.mssp.2022.107063
32.
Fisher
,
D. W.
,
Knickerbocker
,
S.
,
Smith
,
D.
,
Katz
,
R.
,
Garant
,
J.
,
Lubguban
,
J.
,
Soler
,
V.
, and
Robson
,
N.
,
2020
, “
Face to Face Hybrid Wafer Bonding for Fine Pitch Applications
,” IEEE 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, June 3–30, pp.
595
600
.10.1109/ECTC32862.2020.00099
33.
Jang
,
E. J.
,
Kim
,
J. W.
,
Kim
,
B.
,
Matthias
,
T.
, and
Park
,
Y. B.
,
2011
, “
Annealing Temperature Effect on the Cu-Cu Bonding Energy for 3D-IC Integration
,”
Met. Mater. Int.
,
17
(
1
), pp.
105
109
.10.1007/s12540-011-0214-0
34.
Niu
,
F. F.
,
Wang
,
X. B.
,
Yang
,
S. H.
,
Xu
,
S. J.
,
Zhang
,
Y. Y.
,
Suga
,
T.
, and
Wang
,
C. X.
,
2023
, “
Low-Temperature Cu/SiO2 Hybrid Bonding Based on Ar/H2 Plasma and Citric Acid Cooperative Activation for Multi-Functional Chip Integration
,”
Appl. Surf. Sci.
,
648
, p.
159074
.10.1016/j.apsusc.2023.159074
35.
Shigetou
,
A.
, and
Hosoda
,
N.
,
2022
, “
Low-Temperature Direct Hybrid Bonding of Polypropylene to Natural Rubber and Cu by Methyl Glycine Vapor-Assisted Vacuum Ultraviolet (MG-VUV) Method Without Vacuum
,”
Mater. Lett.
,
323
, p.
132499
.10.1016/j.matlet.2022.132499
36.
Ong
,
J. J.
,
Tran
,
D. P.
,
Chiu
,
W. L.
,
Yang
,
S. C.
,
Yu
,
M. H.
,
Shen
,
F. C.
,
Chang
,
H. H.
,
Lee
,
O. H.
,
Chiang
,
C. W.
,
Wang
,
C. H.
,
Wu
,
W. W.
, and
Chen
,
C.
,
2023
, “
Potassium Hydroxide Surface Modification for Low Temperature Cu/SiO2 Hybrid Bonding
,”
Surf. Interfaces
,
40
, p.
103076
.10.1016/j.surfin.2023.103076
37.
Grayson
,
A. C. R.
,
Cima
,
M. J.
, and
Langer
,
R.
,
2005
, “
Size and Temperature Effects on Ploy (Lactic-co-Glycolic Acid) Degradation and Microreservoir Device Performance
,”
Biomaterials
,
26
(
14
), pp.
2137
2145
.10.1016/j.biomaterials.2004.06.033
38.
Zhang
,
L.
,
Liu
,
Z. Q.
,
Chen
,
S. W.
,
Wang
,
Y. D.
,
Long
,
W. M.
,
Guo
,
Y. H.
,
Wang
,
S. Q.
,
Ye
,
G.
, and
Liu
,
W. Y.
,
2018
, “
Materials, Processing and Reliability of Low Temperature Bonding in 3D Chip Stacking
,”
J. Alloys Compd.
,
750
, pp.
980
995
.10.1016/j.jallcom.2018.04.040
39.
Song
,
B.
,
Li
,
F. L.
,
Zhu
,
F. L.
, and
Liu
,
S.
,
2023
, “
High Reliability of Piezoresistive Pressure Sensors by Wafer to Wafer Direct Bonding at Room Temperature
,”
Sens. Actuators A: Phys.
,
364
, p.
114834
.10.1016/j.sna.2023.114834
40.
Lhostis
,
S.
,
Ayoub
,
B.
,
Frémont
,
H.
,
Moreau
,
S.
,
Mattei
,
J. G.
,
Lamontagne
,
P.
, and
Tournie
,
A.
,
2023
, “
Reliability of the Hybrid Bonding Level Using Submicrometric Bonding Pads
,”
Microelectron. Reliab.
,
150
, p.
115189
.10.1016/j.microrel.2023.115189
41.
Ayoub
,
B.
,
Lhostis
,
S.
,
Moreau
,
S.
,
Moreau
,
S.
,
Mukhtarov
,
A.
,
Frémont
,
H.
, and
Mattei
,
J. G.
,
2023
, “
Investigation Into Cu Diffusion at the Cu/SiO2 Hybrid Bonding Interface of 3D Stacked Integrated Circuits
,”
Microelectron. Reliab.
,
143
, p.
114934
.10.1016/j.microrel.2023.114934
42.
Liu
,
C.-M.
,
Lin
,
H.-W.
,
Huang
,
Y.-S.
,
Chu
,
Y.-C.
,
Chen
,
C.
,
Lyu
,
D.-R.
,
Chen
,
K.-N.
, and
Tu
,
K.-N.
,
2015
, “
Low-Temperature Direct Copper-to-Copper Bonding Enabled by Creep on (111) Surfaces of Nanotwinned Cu
,”
Sci. Rep.
,
5
(
1
), pp.
1
11
.10.1038/srep09734
43.
Yu
,
M. H.
,
Ong
,
J. J.
,
Tran
,
D. P.
,
Chiu
,
W. L.
,
Hsu
,
W. Y.
,
Lin
,
H. E.
,
Chen
,
Y. A.
,
Tseng
,
H. H.
,
Shen
,
G. Y.
,
Yang
,
S. C.
, and
Chen
,
C.
,
2023
, “
Low Temperature Cu/SiO2 Hybrid Bonding Via <111> Oriented Nanotwinned Cu With Ar Plasma Surface
,”
Appl. Surf. Sci.
,
636
, p.
157854
.10.1016/j.apsusc.2023.157854
44.
Han
,
H.
,
Lee
,
C.
,
Kim
,
Y.
,
Lee
,
J.
,
Kim
,
R.
,
Kim
,
J.
, and
Yoo
,
B.
,
2021
, “
Cu to Cu Direct Bonding at Low Temperature With High Density Defect in Electrodeposited Cu
,”
Appl. Surf. Sci.
,
550
, p.
149337
.10.1016/j.apsusc.2021.149337
45.
Wang
,
Y.
,
Huang
,
Y. T.
,
Liu
,
Y. X.
,
Feng
,
S. P.
, and
Huang
,
M. X.
,
2022
, “
Thermal Instability of Nanocrystalline Cu Enables Cu-Cu Direct Bonding in Interconnects at Low Temperature
,”
Scr. Mater.
,
220
, p.
114900
.10.1016/j.scriptamat.2022.114900
46.
Chou
,
T.-C.
,
Yang
,
K.-M.
,
Li
,
J.-C.
,
Yu
,
T.-Y.
,
Yang
,
Y.-T.
,
Hu
,
H.-W.
,
Liu
,
Y.-W.
,
Ko
,
C.-T.
,
Chen
,
Y.-H.
,
Tseng
,
T.-J.
, and
Chen
,
K.-N.
,
2020
, “
Investigation of Pillar-Concave Structure for Low Temperature Cu–Cu Direct Bonding in 3D/2.5D Heterogeneous Integration
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
8
), pp.
1296
1303
.10.1109/TCPMT.2020.3004969
47.
Jangam
,
S. C.
,
Bajwa
,
A. A.
,
Mogera
,
U.
,
Ambhore
,
P.
,
Colosimo
,
T.
,
Chylak
,
B.
, and
Iyer
,
S.
,
2019
, “
Fine-Pitch (≤10 μm) Direct Cu-Cu Interconnects Using In-Situ Formic Acid Vapor Treatment
,” IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
620
627
.https://ieeexplore.ieee.org/document/8811172
48.
Yang
,
W.
,
Akaike
,
M.
,
Fujino
,
M.
, and
Suga
,
T.
,
2012
, “
A New Combined Process of Formic Acid Pretreatment for Low-Temperature Bonding of Copper Electrodes
,”
ECS Trans.
,
50
(
7
), pp.
133
138
.10.1149/MA2012-02/40/2966
49.
Yang
,
W. H.
,
Akaike
,
M.
, and
Suga
,
T.
,
2014
, “
Effect of Formic Acid Vapor In Situ Treatment Process on Cu low-Temperature Bonding
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
6
), pp.
951
956
.10.1109/TCPMT.2014.2315761
50.
Kim
,
T. H.
,
Howlader
,
M. M. R.
,
Itoh
,
T.
, and
Suga
,
T.
,
2003
, “
Room Temperature Cu-Cu Direct Bonding Using Surface Activated Bonding Method
,”
J. Vac. Sci. Technol. A
,
21
(
2
), pp.
449
453
.10.1116/1.1537716
51.
Suga
,
T.
, and
Mu
,
F. W.
,
2018
, “
Surface Activated Bonding Method for Low Temperature Bonding
,” Seventh Electronic System-Integration Technology Conference (
ESTC
), Dresden, Germany, Sept. 18–21, pp.
1
4
.10.1109/ESTC.2018.8546367
52.
Park
,
H. S.
,
Seo
,
H. Y.
,
Kim
,
Y. H.
,
Park
,
S. M.
, and
Kim
,
S. E.
,
2021
, “
Low Temperature (260 °C) Solderless Cu-Cu Bonding for Fine-Pitch 3-D Packaging and Heterogeneous Integration
,”
IEEE Trans. Compon., Packaging, Manuf. Technol.
,
11
(
4
), pp.
565
572
.10.1109/TCPMT.2021.3065531
53.
Park
,
M.
,
Baek
,
S.
,
Kim
,
S.
, and
Kim
,
S. E.
,
2015
, “
Argon Plasma Treatment on Cu Surface for Cu Bonding in 3D Integration and Their Characteristics
,”
Appl. Surf. Sci.
,
324
, pp.
168
173
.10.1016/j.apsusc.2014.10.098
54.
Panigrahi
,
A. K.
,
Bonam
,
S.
,
Ghosh
,
T.
,
Singh
,
S. G.
, and
Vanjari
,
S. R. K.
,
2016
, “
Ultra-Thin Ti Passivation Mediated Breakthrough in High Quality Cu-Cu Bonding at Low Temperature and Pressure
,”
Mater. Lett.
,
169
, pp.
269
272
.10.1016/j.matlet.2016.01.126
55.
Chou
,
T.-C.
,
Huang
,
S.-Y.
,
Chen
,
P.-J.
,
Hu
,
H.-W.
,
Liu
,
D.
,
Chang
,
C.-W.
,
Ni
,
T.-H.
,
Chen
,
C.-J.
,
Lin
,
Y.-M.
,
Chang
,
T.-C.
, and
Chen
,
K.-N.
,
2021
, “
Electrical and Reliability Investigation of Cu-to-Cu Bonding With Silver Passivation Layer in 3-D Integration
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
1
), pp.
36
42
.10.1109/TCPMT.2020.3037365
56.
Hong
,
Z. J.
,
Liu
,
D. M.
,
Hu
,
H. W.
,
Hsiung
,
C. K.
,
Cho
,
C. I.
,
Chen
,
C. H.
,
Liu
,
J. H.
,
Weng
,
M. W.
,
Hsu
,
M. P.
,
Hung
,
Y. C.
, and
Chen
,
K. N.
,
2023
, “
Low-Temperature Hybrid Bonding With High Electromigration Resistance Scheme for Application on Heterogeneous Integration
,”
Appl. Surf. Sci.
,
610
, p.
155470
.10.1016/j.apsusc.2022.155470
57.
Tan
,
C. S.
,
Lim
,
D. F.
,
Singh
,
S. G.
,
Goulet
,
S. K.
, and
Bergkvist
,
M.
,
2009
, “
Cu–Cu Diffusion Bonding Enhancement at Low Temperature by Surface Passivation Using Self-Assembled Monolayer of Alkane-Thiol
,”
Appl. Phys. Lett.
,
95
(
19
), p.
192108
.10.1063/1.3263154
58.
Peng
,
L.
,
Zhang
,
L.
,
Fan
,
J.
,
Li
,
H. Y.
,
Lim
,
D. F.
, and
Tan
,
C. S.
,
2012
, “
Ultrafine Pitch (6 μm) of Recessed and Bonded Cu-Cu Interconnects by Three-Dimensional Wafer Stacking
,”
IEEE Electron Device Lett.
,
33
(
12
), pp.
1747
1749
.10.1109/LED.2012.2218273
59.
Hung
,
T. H.
,
Kang
,
T. C.
,
Mao
,
S. Y.
,
Chou
,
T. C.
,
Hu
,
H. W.
,
Chiu
,
H. Y.
,
Shih
,
C. L.
, and
Chen
,
K. N.
,
2021
, “
Investigation of Wet Pretreatment to Improve Cu-Cu Bonding for Hybrid Bonding Applications
,” IEEE 71st Electronic Components and Technology Conference (
ECTC
), San Diego, CA, June 1–July 4, pp.
700
705
.10.1109/ECTC32696.2021.00121
60.
Qiu
,
L. J.
,
Ikeda
,
A.
,
Noda
,
K.
,
Nakai
,
S.
, and
Asano
,
T.
,
2013
, “
Room-Temperature Cu Microjoining With Ultrasonic Bonding of Cone-Shaped Bump
,”
Japanese J. Appl. Phys.
,
52
(
4S
), pp.
1
5
.10.7567/JJAP.52.04CB10
61.
Du
,
L.
,
Shi
,
T. L.
,
Su
,
L.
,
Tang
,
Z. R.
, and
Liao
,
G. L.
,
2017
, “
Hydrogen Thermal Reductive Cu Nanowires in Low Temperature Cu-Cu Bonding
,”
J. Micromech. Microeng.
,
27
(
7
), pp.
075019
9
.10.1088/1361-6439/aa74fb
62.
Liu
,
Z. Y.
,
Cai
,
J.
,
Wang
,
Q.
,
Tan
,
L.
, and
Hu
,
Y.
,
2015
, “
Low Temperature Cu-Cu Bonding Using Ag Nanostructure for 3D Integration
,”
ECS Solid State Lett.
,
4
(
10
), pp.
P75
P76
.10.1149/2.0061510ssl
63.
Kern
,
W.
,
1993
,
Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology, and Applications
,
Noyes Publications
,
New York,
pp.
113
115
.
64.
Gösele
,
U.
,
Stenzel
,
H.
,
Martini
,
T.
,
Steinkirchner
,
J.
,
Conrad
,
D.
, and
Scheerschmidt
,
K.
,
1995
, “
Self-Propagating Room-Temperature Silicon Wafer Bonding in Ultrahigh Vacuum
,”
Appl. Phys. Lett.
,
67
(
24
), pp.
3614
3616
.10.1063/1.115335
65.
GÖsele
,
U.
,
Tong
,
Q. Y.
,
Schumacher
,
A.
,
Kräuter
,
G.
,
Kräuter
,
G.
,
Reiche
,
M.
,
Plößl
,
A.
,
Kopperschmidt
,
P.
,
Lee
,
T. H.
, and
Kim
,
W. J.
,
1999
, “
Wafer Bonding for Microsystems Technologies
,”
Sens. Actuators A: Phys.
,
74
(
1–3
), pp.
161
168
.10.1016/S0924-4247(98)00310-0
66.
Tong
,
Q. Y.
, and
GÖsele
,
U.
,
1996
, “
A Model of Low‐Temperature Wafer Bonding and Its Applications
,”
J. Electrochem. Soc.
,
143
(
5
), pp.
1773
1779
.10.1149/1.1836715
67.
Liao
,
G. L.
,
Shi
,
T. L.
,
Lin
,
X. H.
, and
Ma
,
Z.
,
2010
, “
Effect of Surface Characteristic on Room-Temperature Silicon Direct Bonding
,”
Sens. Actuators A Phys.
,
158
(
2
), pp.
335
341
.10.1016/j.sna.2010.01.025
68.
Zhao
,
Y. L.
,
Song
,
Z. J.
,
Li
,
Y.
,
San
,
H. S.
, and
Yu
,
Y. X.
,
2012
, “
Low Temperature Wafer Direct Bonding Using Wet Chemical Treatment
,”
Adv. Mater. Res.
,
482-484
, pp.
2381
2384
.10.4028/www.scientific.net/AMR.482-484.2381
69.
He
,
R.
,
Fujino
,
M.
,
Yamauchi
,
A.
, and
Suga
,
T.
,
2016
, “
Combined Surface Activated Bonding Technique for Hydrophilic SiO2-SiO2 and Cu-Cu Bonding
,”
ECS Trans.
,
75
(
9
), pp.
117
128
.10.1149/07509.0117ecst
70.
Enquist
,
P.
,
Fountain
,
G.
,
Petteway
,
C.
,
Hollingsworth
,
A.
, and
Grady
,
H.
,
2009
, “
Low Cost of Ownership Scalable Copper Direct Bond Interconnect 3D IC Technology for Three Dimensional Integrated Circuit Applications
,”
IEEE International Conference on 3D System Integration
, San Francisco, CA, Sept. 28–30, pp.
1
6
.10.1109/3DIC.2009.5306533
71.
Sierra-Suarez
,
J. A.
,
Mudrick
,
J. P.
,
Sennett
,
C. C.
,
Friedmann
,
T. A.
,
Arterburn
,
S.
,
Jordan
,
M. B.
,
Caravello
,
L.
,
Gutierrez
,
J. E.
, and
Henny
,
M. D.
,
2020
, “
Strategies Relating to CMP for Die to Wafer Interconnects Utilizing Hybrid Direct Bonding
,” IEEE 70th Electronic Components and Technology Conference (
ECTC
),
Orlando, FL,
June 3–30, pp.
1950
1956
.10.1109/ECTC32862.2020.00304
72.
Mudrick
,
J. P.
,
Sierra-Suarez
,
J. A.
,
Jordan
,
M. B.
,
Friedmann
,
T. A.
,
Jarecki
,
R.
, and
Henny
,
M. D.
,
2019
, “
Sub-10μm Pitch Hybrid Direct Bond Interconnect Development for Die-to-Die Hybridization
,” IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
648
654
.10.1109/ECTC.2019.00103
73.
He
,
R.
,
Fujino
,
M.
,
Yamauchi
,
A.
,
Wang
,
Y. H.
, and
Suga
,
T.
,
2016
, “
Combined Surface Activated Bonding Technique for Low-Temperature Cu/Dielectric Hybrid Bonding
,”
J. Solid State Sci. Technol.
,
5
(
7
), pp.
419
424
.10.1149/2.0201607jss
74.
Seo
,
H. K.
,
Kim
,
S. E.
,
Kim
,
G.
,
Park
,
H. S.
, and
Park
,
Y. B.
,
2020
, “
Effects of Two-Step Plasma Treatment on Cu and SiO2 Surfaces for 3D Bonding Applications
,” IEEE 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, June 3–30, pp.
677
1683
.10.1109/ECTC32862.2020.00263
75.
Rauer
,
C.
,
Moriceau
,
H.
,
Fournel
,
F.
,
Charvet
,
A. M.
,
Morales
,
C.
,
Rochat
,
N.
,
Vandroux
,
L.
,
Rieutord
,
F.
,
Mccormick
,
T.
, and
Radu
,
I.
,
2012
, “
Treatments of Deposited SiOx Surfaces Enabling Low Temperature Direct Bonding
,”
ECS Trans.
,
50
(
7
), pp.
287
295
.10.1149/05007.0287ecst
76.
Tong
,
Q. Y.
,
2006
, “
Room Temperature Metal Direct Bonding
,”
Appl. Phys. Lett.
,
89
(
18
), p.
182101
.10.1063/1.2367663
77.
Goto
,
M.
,
Hagiwara
,
K.
,
Iguchi
,
Y.
,
Ohtake
,
H.
,
Saraya
,
T.
,
Higurashi
,
E.
,
Toshiyoshi
,
H.
, and
Hiramoto
,
T.
,
2014
, “
3D Silicon on Insulator Integrated Circuits With NFET and PFET on Separate Layers Using Au/SiO2 Hybrid Bonding
,”
IEEE Trans. Electron Dev.
,
61
(
8
), pp.
2886
2892
.10.1109/TED.2014.2331975
78.
Zheng
,
X. S.
,
Yan
,
X.
,
Song
,
Z. J.
, and
San
,
H. S.
,
2011
, “
Direct Al-Al Contact in Silicon- pyrex7740 Anodic Bonding for Hermetic Package and Electrical Interconnecting
,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems (
NEMS
), Kaohsiung, Taiwan, Feb. 20–23, pp.
764
767
.10.1109/NEMS.2011.6017466
79.
Lin
,
H.
,
Stevenson
,
J. T. M.
,
Gundlach
,
A. M.
,
Dunare
,
C. C.
, and
Walton
,
A. J.
,
2008
, “
Direct Al-Al Contact Using Low Temperature Wafer Bonding for Integrating MEMS and CMOS Devices
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1059
1061
.10.1016/j.mee.2008.01.054
80.
Kang
,
Q. S.
,
Li
,
G.
,
Li
,
Z. D.
,
Tian
,
Y. H.
, and
Wang
,
C. X.
,
2023
, “
Surface Co-Hydrophilization Via Ammonia Inorganic Strategy for Low-Temperature Cu/SiO2 Hybrid Bonding
,”
J. Mater. Sci. Technol.
,
149
, pp.
161
166
.10.1016/j.jmst.2022.12.012
81.
Wlanis
,
T.
,
Hammer
,
R.
,
Ecker
,
W.
,
Lhostis
,
S.
,
Sart
,
C.
,
Garreignot
,
S. G.
,
Rebhan
,
B.
, and
Maier
,
G. A.
,
2018
, “
Cu-SiO+ Hybrid Bonding Simulation Including Surface Roughness and Viscoplastic Material Modeling: A Critical Comparison of 2D and 3D Modeling Approach
,”
Microelectron. Reliab.
,
86
, pp.
1
9
.10.1016/j.microrel.2018.05.005
82.
Shigetou
,
A.
, and ,
and Suga
,
T.
,
2012
, “
Vapor-Assisted Surface Activation Method for Hmo- and Heterogeneous Bonding of Cu, SiO2, and Polyimide at 150 °C and Atmospheric Pressure
,”
J. Electron. Mater.
,
41
(
8
), pp.
2274
2280
.10.1007/s11664-012-2091-9
83.
Liu
,
F.
,
Yu
,
R. R.
,
Young
,
A. M.
,
Doyle
,
J. P.
,
Wang
,
X.
,
Shi
,
L.
,
Chen
,
K. N.
,
Li
,
X.
,
Dipaola
,
D. A.
,
Brown
,
D.
,
Ryan
,
C. T.
,
Hagan
,
J. A.
,
Wong
,
K. H.
,
Lu
,
M.
,
Gu
,
X.
,
Klymko
,
N. R.
,
Perfecto
,
E. D.
,
Merryman
,
A. G.
,
Kelly
,
K. A.
,
Purushothaman
,
S.
,
Koester
,
S. J.
,
Wisnieff
,
R.
, and
Haensch
,
W.
,
2008
, “
A 300-mm Wafer-Level Three-Dimensional Integration Scheme Using Tungsten Through-Silicon Via and Hybrid Cu-Adhesive Bonding
,” 2008 IEEE International Electron Devices Meeting (
IEDM
), San Francisco, CA, Dec. 15–17, pp.
1
4
.10.1109/IEDM.2008.4796762
84.
Nimura
,
M.
,
Mizuno
,
J.
,
Shigetou
,
A.
,
Sakuma
,
K.
,
Ogino
,
K.
,
Enomoto
,
T.
, and
Shoji
,
S.
,
2013
, “
Study on Hybrid Au-Underfill Resin Bonding Method With Lock-and-Key Structure for 3D Integration
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
4
), pp.
558
565
.10.1109/TCPMT.2013.2240566
85.
Takeda
,
K.
, and
Aoki
,
M.
,
2014
, “
3D Integration Technology Using Hybrid Bonding and Via-Last TSV Process
,”
IEEE International Interconnect Technology Conference
, San Hose, CA, May 20–23, pp.
211
214
.10.1109/IITC.2014.6831872
86.
Chery
,
E.
,
Fohn
,
C.
,
Messemaeker
,
J. D.
, and
Beyne
,
E.
,
2023
, “
Reliability Challenges in Advanced 3D Technologies: The Case of Through Silicon Vias and SiCN–SiCN Wafer-to-Wafer Hybrid-Bonding Technologies
,”
IEEE Trans. Device Mater. Reliab.
,
23
(
4
), pp.
615
622
.10.1109/TDMR.2023.3327664
87.
Chiu
,
W. L.
,
Lee
,
O. H.
,
Kuo
,
T. Y.
,
Lo
,
J. Y. J.
,
Shih
,
C. L.
,
Chiu
,
H. C.
, and
Chang
,
H. H.
,
2023
, “
Low Temperature and Fine Pitch Nanocrystalline Cu/SiCN Wafer-to-Wafer Hybrid Bonding
,” IEEE 73rd Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30–June 2, pp.
1105
1109
.10.1109/ECTC51909.2023.00189
88.
Pai
,
C. W.
,
Uchida
,
K.
,
Tada
,
M.
, and
Ishikuro
,
H.
,
2024
, “
Design and Analysis of a High-Speed Low-Power Comparator With Regeneration Enhancement and Through Current Suppression Techniques From 4 K to 300 K in 65-nm Cryo-CMOS
,”
Microelectron. J.
,
144
, p.
106066
.10.1016/j.mejo.2023.106066
89.
Byon
,
C.
,
Choo
,
K.
, and
Kim
,
S. J.
,
2011
, “
Experimental and Analytical Study on Chip Hot Spot Temperature
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2066
2072
.10.1016/j.ijheatmasstransfer.2010.12.022
90.
Men
,
Z. C.
,
Chen
,
W. J.
,
Hu
,
Q.
, and
Liu
,
S. T.
,
2024
, “
Numerical and Experimental Investigation of a Multi-Channel Heat Sink Distribution Header Designed by Topology Optimization
,”
Appl. Therm. Eng.
,
238
, p.
122008
.10.1016/j.applthermaleng.2023.122008
91.
Mathew
,
V. K.
, and
Hotta
,
T. K.
,
2021
, “
Performance Enhancement of High Heat Generating IC Chips Using Paraffin Wax Based Mini-channels–A Combined Experimental and Numerical Approach
,”
Int. J. Therm. Sci.
,
164
, p.
106865
.10.1016/j.ijthermalsci.2021.106865
92.
Zhao
,
Y.
,
Zhang
,
Z. G.
,
Cai
,
C. Y.
,
Zhou
,
Z. Z.
,
Ling
,
Z. Y.
, and
Fang
,
X. M.
,
2023
, “
Vertically Aligned Carbon Fibers-Penetrated Phase Change Thermal Interface Materials With High Thermal Conductivity for Chip Heat Dissipation
,”
Appl. Therm. Eng.
,
230
, p.
120807
.10.1016/j.applthermaleng.2023.120807
93.
Ding
,
S. C.
,
Fan
,
J. F.
,
He
,
D. Y.
,
Cai
,
L. F.
,
Zeng
,
X. L.
,
Ren
,
L. L.
,
Du
,
G. P.
,
Zeng
,
X. L.
, and
Sun
,
R.
,
2022
, “
High Thermal Conductivity and Remarkable Damping Composite Gels as Thermal Interface Materials for Heat Dissipation of Chip
,”
Chip
,
1
(
2
), p.
100013
.10.1016/j.chip.2022.100013
94.
Bianco
,
N.
,
Cherella
,
N.
,
Fragnito
,
A.
,
Iasiello
,
M.
, and
Mauro
,
G. M.
,
2024
, “
Multi-Material Topology Optimization of Innovative Microchannel Heat Sinks Equipped With Metal Foams
,”
Int. J. Heat Mass Transfer
,
222
, p.
125201
.10.1016/j.ijheatmasstransfer.2024.125201
95.
Chen
,
S.
,
Cheng
,
W. T.
,
Huang
,
Z. J.
,
Wang
,
R. B.
,
Gu
,
Y. Q.
,
Zhang
,
Z. H.
,
Wang
,
J. T.
, and
Kan
,
J. W.
,
2023
, “
A Miniature Atomization-Air-Cooled Heat Sink for Electronic Chips
,”
Int. J. Therm. Sci.
,
190
, p.
108305
.10.1016/j.ijthermalsci.2023.108305
96.
Hu
,
H. Z.
,
Chen
,
C. M.
,
Li
,
C.
, and
Pan
,
M. Q.
,
2023
, “
Experimental Investigation of Roll Bond Liquid Cooling Plates for Server Chip Heat Dissipation
,”
Appl. Therm. Eng.
,
226
, p.
120284
.10.1016/j.applthermaleng.2023.120284
97.
Hou
,
L.
,
Chery
,
E.
,
Croes
,
K.
,
Tierno
,
D.
,
Chew
,
S. A.
,
Chen
,
Y.
,
Rakbin
,
P.
, and
Beyne
,
E.
,
2022
, “
Reliability Investigation of W2W Hybrid Bonding Interface: Breakdown Voltage and Leakage Mechanism
,” 2022 IEEE International Reliability Physics Symposium (
IRPS
), Dallas, TX, Mar. 27–31, pp. 4C.2-1–4C.2-6.10.1109/IRPS48227.2022.9764478
98.
Yang
,
Z. W.
,
Zhang
,
D. H.
,
Li
,
C. Y.
,
Tan
,
C. M.
, and
Prasad
,
K.
,
2004
, “
Barrier Layer Effects on Reliabilities of Copper Metallization
,”
Thin Solid Films
,
462-463
, pp.
288
291
.10.1016/j.tsf.2004.05.101
99.
Howlader
,
M. M. R.
,
Kibria
,
M. G.
,
Zhang
,
F.
, and
Kim
,
M. J.
,
2010
, “
Hybrid Plasma Bonding for Void-Free Strong Bonded Interface of Silicon/Glass at 200 °C
,”
Talanta
,
82
(
2
), pp.
508
515
.10.1016/j.talanta.2010.05.001
100.
Messemaeker
,
J. D.
,
Kim
,
S. W.
,
Stucchi
,
M.
,
Beyer
,
G.
, and
Croes
,
K.
,
2018
, “
Electromigration Behavior of Cu/SiCN to Cu/SiCN Hybrid Bonds for 3D Integrated Circuits
,”
International Conference on Solid State Devices and Materials
,
Tokyo, Japan
, Sept. 9–13, pp.
449
450
.https://confit.atlas.jp/guide/event-img/ssdm2018/G-1-04/public/pdf_archive#:~:text=A%20new%20electromigration%20mechanism%20for,to%20the%20electron%20flow%20direction
101.
You do not currently have access to this content.