An irreversible cycle model of the Brayton heat engine is established, in which the irreversibilities resulting from the internal dissipation of the working substance in the adiabatic compression and expansion processes and the finite-rate heat transfer in the regenerative and constant-pressure processes are taken into account. The power output and efficiency of the cycle are expressed as functions of temperatures of the working substance and the heat sources, heat transfer coefficients, pressure ratio, regenerator effectiveness, and total heat transfer area including the heat transfer areas of the regenerator and other heat exchangers. The regenerative criteria are given. The power output is optimized for a given efficiency. The general optimal performance characteristics of the cycle are revealed. The optimal performance of the Brayton heat engines with and without regeneration is compared quantitatively. The advantages of using the regenerator are expounded. Some important parameters of an irreversible regenerative Brayton heat engine, such as the temperatures of the working substance at different states, pressure ratio, maximum value of the pressure ratio, regenerator effectiveness and ratios of the various heat transfer areas to the total heat transfer area of the cycle, are further optimized. The optimal relations between these parameters and the efficiency of the cycle are presented by a set of characteristic curves for some assumed compression and expansion efficiencies. The results obtained may be helpful to the comprehensive understanding of the optimal performance of the Brayton heat engines with and without regeneration and play a theoretical instructive role for the optimal design of a regenerative Brayton heat engine.

1.
Aragon-Gonzalez
,
G.
,
Canales-Palma
,
A.
, and
Leon-Galicia
,
A.
, 2003, “
A Criterion to Maximize the Irreversible Efficiency in Heat Engines
,”
J. Phys. D
0022-3727,
36
, pp.
280
287
.
2.
Blank
,
D. A.
, 1999, “
Analysis of a Combined Law Power-Optimized Open Joule-Brayton Heat Engine Cycle With a Finite Interactive Heat Source
,”
J. Phys. D
0022-3727,
32
, pp.
769
776
.
3.
Wu
,
C.
,
Chen
,
L.
, and
Sun
,
F.
, 1996, “
Performance of a Regenerative Brayton Heat Engine
,”
Energy
0360-5442,
21
, pp.
71
76
.
4.
Wu
,
C.
, and
Kiang
,
R.
, 1991, “
Performance of a Nonisentropic Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
, pp.
501
503
.
5.
Aragon-Gonzalez
,
G.
,
Canales-Palma
,
A.
, and
Leon-Galicia
,
A.
, 2000, “
Maximum Irreversible Work and Efficiency in Power Cycles
,”
J. Phys. D
0022-3727,
33
, pp.
1403
1409
.
6.
Chen
,
L.
,
Zheng
,
J.
,
Sun
,
F.
, and
Wu
,
C.
, 2001, “
Optimal Distribution of Heat Exchanger Inventory for Power Density Optimization of an Endoreversible Closed Brayton Cycle
,”
J. Phys. D
0022-3727,
34
, pp.
422
437
.
7.
Bejan
,
A.
, 1995, “
Theory of Heat Transfer-Irreversible Power Plants-II. The Optimal Allocation of Heat Exchange Equipment
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
433
444
.
8.
Perez-Grande
,
I.
, and
Leo
,
T. J.
, 2002, “
Optimization of a Commercial Aircraft Environmental Control System
,”
Appl. Therm. Eng.
1359-4311,
22
, pp.
1885
1904
.
9.
Huang
,
Y. C.
,
Hung
,
C. I.
, and
Chen
,
C. K.
, 2000, “
An Ecological Exergy Analysis for an Irreversible-Brayton Engine With an External Heat Source
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
214
, pp.
413
421
.
10.
Chen
,
L.
,
Sun
,
F.
,
Wu
,
C.
, and
Kiang
,
R.
, 1997, “
Theoretical Analysis of the Performance of a Regenerative Closed Brayton Cycle With Internal Irreversibilities
,”
Energy Convers. Manage.
0196-8904,
36
, pp.
871
877
.
11.
Sahin
,
B.
,
Kodal
,
A.
, and
Kaya
,
S. S.
, 1998, “
A Comparative Performance Analysis of Irreversible Regenerative Reheating Joule-Brayton Engines Under Maximum Power Density and Maximum Power Conditions
,”
J. Phys. D
0022-3727,
31
, pp.
2125
2131
.
12.
Goktun
,
S.
, and
Yavuz
,
H.
, 1999, “
Thermal Efficiency of a Regenerative Brayton Cycle With Isothermal Heat Addition
,”
Energy Convers. Manage.
0196-8904,
40
, pp.
1259
1266
.
13.
Erbay
,
L.
,
Goktun
,
S.
, and
Yavuz
,
H.
, 2001, “
Optimal Design of the Regenerative Gas Turbine Engine With Isothermal Heat Addition
,”
Appl. Energy
0306-2619,
68
, pp.
249
264
.
14.
Chen
,
L.
,
Wang
,
W.
,
Sun
,
F.
, and
Wu
,
C.
, 2004, “
Closed Intercooled Regenerator Brayton-Cycle With Constant-Temperature Heat-Reservoirs
,”
Appl. Energy
0306-2619,
77
, pp.
429
446
.
15.
Sahin
,
B.
,
Kodal
,
A.
, and
Yavuz
,
H.
, 1995, “
Efficiency of a Joule-Brayton Engine at Maximum Power Density
,”
J. Phys. D
0022-3727,
28
, pp.
1309
1313
.
16.
Sahin
,
B.
,
Kodal
,
A.
,
Yilmaz
,
T.
, and
Yavuz
,
H.
, 1996, “
Maximum Power Density Analysis of an Irreversible Joule-Brayton Engine
,”
J. Phys. D
0022-3727,
29
, pp.
1162
1167
.
17.
Cheng
,
C.
, and
Chen
,
C.
, 1999, “
Ecological Optimization of an Irreversible Brayton Heat Engine
,”
J. Phys. D
0022-3727,
32
, pp.
350
357
.
18.
Bejan
,
A.
, 1988,
Advanced Engineering Thermodynamics
,
Wiley
,
New York
.
19.
Chen
,
J.
, 1994, “
The Maximum Power Output and Maximum Efficiency of an Irreversible Carnot Heat Engine
,”
J. Phys. D
0022-3727,
27
, pp.
1144
1149
.
20.
Chen
,
J.
, and
Yan
,
Z.
, 1989, “
Unified Description of Endoreversible Cycles
,”
Phys. Rev. A
1050-2947,
39
, pp.
4140
4147
.
21.
Wu
,
C.
,
Chen
,
L.
, and
Chen
,
J.
, 1999,
Recent Advances in Finite-Time Thermodynamics
,
Nova Science
,
New York
.
22.
Lee
,
G.
,
Kang
,
B.
, and
Lee
,
J.
, 1998, “
Effectiveness Enhancement of a Thermal Regenerator in an Oscillating Flow
,”
Appl. Therm. Eng.
1359-4311,
18
, pp.
653
660
.
23.
Cheng
,
C.
, and
Chen
,
C.
, 1997, “
Power Optimization of an Irreversible Brayton Heat Engine
,”
Energy Sources
0090-8312,
19
, pp.
461
474
.
24.
Cheng
,
C.
, and
Chen
,
C.
, 1998, “
Efficiency Optimization of an Irreversible Brayton Heat Engine
,”
ASME J. Energy Resour. Technol.
0195-0738,
120
, pp.
143
148
.
25.
Chen
,
L.
,
Zheng
,
J.
,
Sun
,
F.
, and
Wu
,
C.
, 2002, “
Performance Comparison of an Endoreversible Closed Variable Temperature Heat Reservoir Brayton Cycle Under Maximum Density and Maximum Power Conditions
,”
Energy Convers. Manage.
0196-8904,
43
, pp.
33
43
.
26.
Zhou
,
Y.
,
Tyagi
,
S.
,
Wu
,
C.
, and
Chen
,
J.
, 2004, “
Some Optimum Criteria on the Performance Parameters of an Irreversible Brayton Heat Engine
,”
Int. J. Ambient Energ.
0143-0750,
26
, pp.
37
44
.
You do not currently have access to this content.