This paper describes the upper level of a two-tiered sustainability assessment framework (SAF) for determining the optimal synthesis/design and operation of a power network and its associated energy production and storage technologies. The upper-level framework is described, and results for its application to a test bed scenario given by the Northwest European electricity power network presented. A brief description of the lower level of the SAF is given as well. In order to analyze the impact of microgrids (MGs) in the main network, two different scenarios are considered in the analysis, i.e., a network without MGs and a network with MGs. The optimization is carried out in a multi-objective, quasi-stationary manner with producer partial-load behavior taken into account via nonlinear functions for efficiency, cost, and emissions that depend on the electricity generated by each nonrenewable or renewable producer technology. Results indicate for the particular problem posed and for the optimal configurations found that including MGs improves the network relative to reductions in capital and operating costs and to increases in network resiliency. On the other hand, total daily SO2 emissions and network exergetic efficiency are not improved for the case when MGs are included.

References

1.
World Commission on Environment and Development
,
1987
,
Our Common Future
,
Oxford University Press
,
Oxford, UK
, Vol.
383
.
2.
Hammond
,
G. P.
,
2004
, “
Engineering Sustainability: Thermodynamics, Energy Systems, and the Environment
,”
Int. J. Energy Res.
,
28
(
7
), pp.
613
639
.10.1002/er.988
3.
Wang
,
J. J.
,
Jing
,
Y. Y.
,
Zhang
,
C. F.
, and
Zhao
,
J. H.
,
2009
, “
Review on Multi-Criteria Decision Analysis Aid in Sustainable Energy Decision-Making
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2263
2278
.10.1016/j.rser.2009.06.021
4.
Verda
,
V.
,
Serra
,
L.
, and
Valero
,
A.
,
2005
, “
Thermoeconomic Diagnosis: Zooming Strategy Applied to Highly Complex Energy Systems. Part 1: Detection and Localization of Anomalies
,”
ASME J. Energy Res. Technol.
,
127
(
1
), pp.
42
49
.10.1115/1.1819315
5.
Verda
,
V.
,
Serra
,
L.
, and
Valero
,
A.
,
2005
, “
Thermoeconomic Diagnosis: Zooming Strategy Applied to Highly Complex Energy Systems. Part 2: On the Choice of the Productive Structure
,”
ASME J. Energy Res. Technol.
,
127
(
1
), pp.
50
58
.10.1115/1.1819314
6.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8
), pp.
1257
1289
.10.1016/j.energy.2005.03.011
7.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
A New Approach to the Exergy Analysis of Absorption Refrigeration Machines
,”
Energy
,
33
(
6
), pp.
890
907
(2008).10.1016/j.energy.2007.09.012
8.
von Spakovsky
,
M. R.
, and
Frangopoulos
,
C. A.
,
2009
, “
Analysis and Optimization of Energy Systems With Sustainability Considerations
,”
Encyclopedia of Life Support Systems
(Exergy, Energy System Analysis and Optimization),
C.
Frangopoulos
, ed., Vol.
3
, Developed under the Auspices of UNESCO, EOLSS Publishers, Paris, France.
9.
Curti
,
V.
,
von Spakovsky
,
M. R.
, and
Favrat
,
D.
,
2000
, “
An Environomic Approach for the Modeling and Optimization of a District Heating Network Based on Centralized and Decentralized Heat Pumps, Cogeneration and/or Gas Furnace. Part I: Methodology
,”
Int. J. Therm. Sci.
,
39
(
7
), pp.
731
741
.10.1016/S1290-0729(00)00225-8
10.
Pelster
,
S.
,
von Spakovsky
,
M. R.
, and
Favrat
,
D.
,
2001
, “
The Thermoeconomic and Environomic Modeling and Optimization of the Synthesis, Design and Operation of Combined Cycles With Advanced Options
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
717
726
.10.1115/1.1366323
11.
Meyer
,
L.
,
Tsatsaronis
,
G.
,
Buchgeister
,
J.
, and
Schebek
,
L.
,
2009
, “
Exergoenvironmental Analysis for Evaluation of the Environmental Impact of Energy Conversion Systems
,”
Energy
,
34
(
1
), pp.
75
89
.10.1016/j.energy.2008.07.018
12.
Petrakopoulou
,
F.
,
Boyano
,
A.
,
Cabrera
,
M.
, and
Tsatsaronis
,
G.
,
2011
, “
Exergoeconomic and Exergoenvironmental Analyses of a Combined Cycle Power Plant With Chemical Looping Technology
,”
Int. J. Greenhouse Gas Control
,
5
(
3
), pp.
475
482
.10.1016/j.ijggc.2010.06.008
13.
Wood
,
A. J.
, and
Wollenberg
,
B. F.
,
1984
,
Power Generation, Operation and Control
,
Wiley
, New York.
14.
Nanda
,
J.
,
Hari
,
L.
, and
Kothari
,
M. L.
,
1994
, “
Economic Emission Load Dispatch With Line Flow Constraints Using a Classical Technique
,”
IEE Proc. Gener. Transm. Distrib.
,
141
(
1
), pp.
1
10
.10.1049/ip-gtd:19949770
15.
Streiffert
,
D.
,
1995
, “
Multi-Area Economic Dispatch With Tie Line Constraints
,”
IEEE Trans. Power Syst.
,
10
(
4
), pp.
1946
1951
.10.1109/59.476062
16.
Hobbs
,
B. F.
,
Drayton
,
G.
,
Bartholomew
,
E.
, and
Lise
,
W.
,
2008
, “
Improved Transmission Representations in Oligopolistic Market Models: Quadratic Losses, Phase Shifters, and DC Lines
,”
IEEE Trans. Power Syst.
,
23
(
3
), pp.
1018
1029
.10.1109/TPWRS.2008.926451
17.
Lo Prete
,
C.
,
Hobbs
,
B. F.
,
Norman
,
C. S.
,
Cano-Andrade
,
S.
,
Fuentes
,
A.
,
von Spakovsky
,
M. R.
, and
Mili
,
L.
,
2012
, “
Sustainability and Reliability Assessment of Microgrids in a Regional Electricity Market
,”
Energy
,
41
(
1
), pp.
192
202
.10.1016/j.energy.2011.08.028
18.
Pipattanasomporn
,
M.
,
Willingham
,
M.
, and
Rahman
,
S.
,
2005
, “
Implications of On-Site Distributed Generation for Commercial/Industrial Facilities
,”
IEEE Trans. Power Syst.
,
20
(
1
), pp.
206
212
.10.1109/TPWRS.2004.841233
19.
Costa
,
P. M.
, and
Matos
,
M. A.
,
2009
, “
Assessing the Contribution of Microgrids to the Reliability of Distribution Networks
,”
Electr. Power Syst. Res.
,
79
(
2
), pp.
382
389
.10.1016/j.epsr.2008.07.009
20.
Chen
,
Q.
, and
Mili
,
L.
,
2013
, “
Composite Power System Vulnerability Evaluation to Cascading Failures Using Importance Sampling and Antithetic Variates
,”
IEEE Trans. Power Syst.
,
28
(
3
), pp.
2321
2330
.10.1109/TPWRS.2013.2238258
21.
Frangopoulos
,
C.
,
von Spakovsky
,
M. R.
, and
Sciubba
,
E.
,
2002
, “
A Brief Review of Methods for the Design and Synthesis Optimization of Energy Systems
,”
Int. J. Appl. Thermodyn.
,
5
, pp.
151
160
.
22.
Hobbs
,
B. F.
, and
Meier
,
P.
,
2000
,
Energy Decisions and the Environment: A Guide to the Use of Multicriteria Methods
,
Kluwer Academic Publishers
,
Boston, MA
.
23.
Flury
,
K.
, and
Frischknecht
,
R.
,
2012
, “
Life Cycle Inventories of Hydroelectric Power Generation
,” ESU-Services, Fair Consulting in Sustainability, commissioned by Öko-Institute e.V., pp.
1
51
.
24.
Chiarelli
,
A.
,
2014
, “
Exergy Life Cycle Assessment of Renewable and Non-Renewable Energy Production and Storage Systems
,” M.S. thesis, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, and the Politecnico di Torino, Torino, Italy.
25.
Tsatsaronis
,
G.
, and
Pisa
,
J.
,
1994
, “
Exergoeconomic Evaluation and Optimization of Energy Systems—Application to the CGAM Problem
,”
Energy
,
19
(
3
), pp.
287
321
.10.1016/0360-5442(94)90113-9
26.
Frangopoulos
,
C.
, and
von Spakovsky
,
M.
,
1993
, “
A Global Environomic Approach for Energy Systems Analysis and Optimization—Part I
,”
International Conference ENSEC’93: Energy Systems and Ecology
,
J.
Szargut
, ed.,
Cracow, Poland
, Jul. 5–9, pp.
123
132
.
27.
von Spakovsky
,
M.
, and
Frangopoulos
,
C.
,
1993
, “
A Global Environomic Approach for Energy Systems Analysis and Optimization—Part II
,”
International Conference ENSEC’93: Energy Systems and Ecology
,
J.
Szargut
, ed.,
Cracow, Poland
, Jul. 5–9, pp.
133
144
.
28.
King
,
R. T. A.
, and
Rughooputh
,
H. C.
,
2003
, “
Elitist Multiobjective Evolutionary Algorithm for Environmental/Economic Dispatch
,”
IEEE 2003 Congress on Evolutionary Computation (CEC’03)
, Vol.
2
, pp.
1108
1114
.
29.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
30.
Mili
,
L.
,
2011
, “
Taxonomy of the Characteristics of Power System Operating States
,”
2nd NSF-VT Resilient and Sustainable Critical Infrastructures (RESIN) Workshop
,
Tucson, AZ
, Jan. 13–15, pp.
1
13
.
31.
Chen
,
Q.
, and
Mili
,
L.
,
2011
, “
Resiliency Metrics for Electric Power Systems
,” Electric and Computer Engineering Department, Virginia Tech, Northern Virginia Center, Falls Church, VA.
32.
Billinton
,
R.
, and
Allan
,
R. N.
,
1996
,
Reliability Evaluation of Power Systems
, 2nd ed.,
Plenum
,
New York
.10.1007/978-1-4899-1860-4
33.
Gross
,
G.
,
Garapic
,
N. V.
, and
McNutt
,
B.
,
1988
, “
The Mixture of Normals Approximation Technique for Equivalent Load Duration Curves
,”
IEEE Trans. Power Syst.
,
3
(
2
), pp.
368
374
.10.1109/59.192886
34.
Hobbs
,
B. F.
, and
Rijkers
,
F. A. M.
,
2004
, “
Modeling Strategic Generator Behavior With Conjectured Transmission Price Responses in a Mixed Transmission Pricing System. Part I: Formulation
,”
IEEE Trans. Power Syst.
,
19
(
2
), pp.
707
717
.10.1109/TPWRS.2003.821628
35.
Energy Research Centre of the Netherlands
, “
COMPETES Input Data
,” accessed May 3, 2015, www.ecn.nl/fileadmin/ecn/units/bs/COMPETES/cost-functions.xls
36.
European Network of Transmission System Operators for Electricity
, “
Hourly Load Values for a Specific Country for a Specific Month
,” accessed May 3,
2015
, www.entsoe.eu/index.php?id=137
37.
Sumio
,
Y.
,
Masuto
,
S.
, and
Fumihiro
,
M.
,
2004
, “
Thermoselect Waste Gasification and Reforming Process
,” JFE Technical Report No. 3, pp.
21
26
.
38.
Kehlhofer
,
R.
,
Rukes
,
B.
,
Hannemann
,
F.
, and
Stirnimann
,
F.
,
2009
,
Combined Cycle Gas and Steam Turbine Power Plants
, 3rd ed.,
PennWell Corporation
,
Tulsa, OK
.
39.
Smeers
,
Y.
,
Bolle
,
L.
, and
Squilbin
,
O.
,
2001
, “
Coal Options, Evaluation of Coal-Based Power Generation in an Uncertain Context
,” Federal Office for Scientific, Technical and Cultural Affairs, Report No. CG/DD/231-G/DD/232.
40.
Lako
,
P.
,
2004
, “
Coal-Fired Power Technologies
,” ECN Project on Clean Coal Technologies, Report No. ECN-C-04-076, pp.
1
36
.
41.
King
,
D. E.
,
2006
, “
Electric Power Micro-Grids: Opportunities and Challenges for an Emerging Distributed Energy Architecture
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
42.
Erdmann
,
G.
,
2003
, “
Future Economics of the Fuel Cell Housing Market
,”
Int. J. Hydrogen Energy
,
28
(
7
), pp.
685
694
.10.1016/S0360-3199(02)00281-1
43.
Goldstein
,
R.
,
Hedman
,
B.
,
Knowles
,
D.
,
Freedman
,
S. I.
,
Woods
,
R.
, and
Schweizer
,
T.
,
2003
, “
Gas-Fired Distributed Energy Resource Technology Characterizations
,”
National Renewable Energy Laboratory
, Report No. NREL/TP-620-34783.
44.
U.S. EPA
,
2003
, “
Combined Heat and Power at Commercial Supermarket: Capstone 60 kW Microturbine CHP System
,” Environmental Technology Verification Report No. SRI/USEPA-GHG-VR-27.
45.
Kuprianov
,
V. I.
,
Kaewboonsong
,
W.
, and
Douglas
,
P. L.
,
2008
, “
Minimizing Fuel and Environmental Costs for a Variable-Load Power Plant (Co-) Firing Fuel Oil and Natural Gas—Part 2. Optimization of Load Dispatch
,”
Fuel Process. Technol.
,
89
(
1
), pp.
55
61
.10.1016/j.fuproc.2007.07.001
46.
Goldstein
,
R.
,
Hedman
,
B.
,
Knowles
,
D.
,
Freedman
,
S. I.
,
Woods
,
R.
, and
Schweizer
,
T.
,
2003
, “
Gas-Fired Distributed Energy Resource Technology Characterizations
,”
National Renewable Energy Laboratory
, Report No. NREL/TP-620-34783.
47.
U.S. EPA CHP Partnership
,
2007
, “
Biomass Combined Heat and Power Catalog of Technologies
,” Biomass CHP Catalog, pp.
1
113
.
48.
X-RatesTM
, accessed May 3,
2015
, www.x-rates.com/d/USD/EUR/hist2010.html
49.
Cano-Andrade
,
S.
,
von Spakovsky
,
M. R.
,
Fuentes
,
A.
,
Lo Prete
,
C.
,
Hobbs
,
B. F.
, and
Mili
,
L.
,
2012
, “
Multiobjective Optimization for the Sustainable-Resilient Synthesis/Design/Operation of a Power Network Coupled to Distributed Power Producers Via Microgrids
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE’2012)
, Vol.
6
, pp.
1393
1408
.
50.
World Nuclear Association
, “
Nuclear Power Reactors
,” accessed May 3, 2015, http://world-nuclear.org/info/Nuclear-Fuel-Cycle/Power-Reactors/Nuclear-PowerReactors/#.Uijdhj_N3zs
51.
European Nuclear Society
,
2012
, “
Capacity Operating Hours
,” accessed May 3, 2015, www.euronuclear.org/info/encyclopedia/capacityoperationhours.htm
52.
Tits
,
A. L.
, Electrical and Computer Engineering and the Institute for Systems Research, University of Maryland, accessed May 3,
2015
, http://www.ece.umd.edu/∼andre/
53.
Zhou
,
J. L.
, and
Tits
,
A. L.
,
1996
, “
An SQP Algorithm for Finely Discretized Continuous Minimax Problems and Other Minimax Problems With Many Objective Functions
,”
SIAM J. Optim.
,
6
(
2
), pp.
461
487
.10.1137/0806025
54.
Lawrence
,
C. T.
, and
Tits
,
A. L.
,
1998
, “
Feasible Sequential Quadratic Programming for Finely Discretized Problems From SIP
,”
Semi-Infinite Programming
, Vol. 25 (Nonconvex Optimization and Its Application), Springer, pp.
159
193
.10.1007/978-1-4757-2868-2
55.
Cohon
,
J. L.
,
1978
,
Multiobjective Programming and Planning
,
Academic
,
New York
.
56.
Zhang
,
W.
, and
Gaggioli
,
R. A.
,
1992
, “
Multiobjective Optimization With Aid of Fuzzy-Set Concepts
,”
ASME Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems Conference (ECOS'92)
,
Zaragoza, Spain
, Jun. 15–18, pp.
255
267
.
57.
Frangopoulos
,
C. A.
, and
Keramioti
,
D. E.
,
2010
, “
Multi-Criteria Evaluation of Energy Systems With Sustainability Considerations
,”
Entropy
,
12
(
5
), pp.
1006
1020
.10.3390/e12051006
You do not currently have access to this content.