The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.

References

1.
Weigl
,
K.
,
Schuster
,
G.
,
Stamatelopoulos
,
G. N.
, and
Friedl
,
A.
,
1999
, “
Increasing Power Plant Efficiency by Fuel Drying
,”
Comput. Chem. Eng.
,
23
(Suppl. 1), pp.
S919
S922
.
2.
Reid
,
I. A. B.
,
2016
,
Retrofitting Lignite Plants to Improve Efficiency Performance
, IEA Clean Coal Centre, London.
3.
Xu
,
C.
,
Xu
,
G.
,
Zhao
,
S.
,
Dong
,
W.
,
Zhou
,
L.
, and
Yang
,
Y.
,
2016
, “
A Theoretical Investigation of Energy Efficiency Improvement by Coal Pre-Drying in Coal Fired Power Plants
,”
Energy Convers Manage.
,
122
, pp.
580
588
.
4.
Xu
,
C.
,
Xu
,
G.
,
Zhu
,
M.
,
Dong
,
W.
,
Zhang
,
Y.
,
Yang
,
Y.
, and Zhang, D.,
2016
, “
Thermodynamic Analysis and Economic Evaluation of a 1000 MW Bituminous Coal Fired Power Plant Incorporating Low-Temperature Pre-Drying (LTPD)
,”
Appl. Therm. Eng.
,
96
, pp.
613
622
.
5.
Pawlak-Kruczek
,
H.
,
2017
,
Low-Rank Coals Power Generation, Fuel and Chemical Production
, Woodhead Publishing, Cambridge, UK, pp.
23
40
.
6.
Nikolopoulos
,
N.
,
Violidakis
,
I.
,
Karampinis
,
E.
,
Agraniotis
,
M.
,
Bergins
,
C.
,
Grammelis
,
P.
, and Kakaras, E.,
2015
, “
Report on Comparison Among Current Industrial Scale Lignite Drying Technologies (A Critical Review of Current Technologies)
,”
Fuel
,
155
, pp.
86
114
.
7.
Karthikeyan
,
M.
,
Zhonghua
,
W.
, and
Mujumdar
,
A. S.
,
2009
, “
Low-Rank Coal Drying Technologies—Current Status and New Developments
,”
Dry Technol.
,
27
(
3
), pp.
403
415
.
8.
Xu
,
C.
,
Bai
,
P.
,
Xin
,
T.
,
Hu
,
Y.
,
Xu
,
G.
, and
Yang
,
Y.
,
2017
, “
A Novel Solar Energy Integrated Low-Rank Coal Fired Power Generation Using Coal Pre-Drying and an Absorption Heat Pump
,”
Appl. Energy
,
200
, pp.
170
179
.
9.
Xu
,
C.
,
Xu
,
G.
,
Zhao
,
S.
,
Zhou
,
L.
,
Yang
,
Y.
, and
Zhang
,
D.
,
2015
, “
An Improved Configuration of Lignite Pre-Drying Using a Supplementary Steam Cycle in a Lignite Fired Supercritical Power Plant
,”
Appl. Energy
,
160
, pp.
882
891
.
10.
Atsonios
,
K.
,
Violidakis
,
I.
,
Agraniotis
,
M.
,
Grammelis
,
P.
,
Nikolopoulos
,
N.
, and
Kakaras
,
E.
,
2015
, “
Thermodynamic Analysis and Comparison of Retrofitting Pre-Drying Concepts at Existing Lignite Power Plants
,”
Appl. Therm. Eng.
,
74
, pp.
165
173
.
11.
Han
,
X.
,
Yan
,
J.
,
Karellas
,
S.
,
Liu
,
M.
,
Kakaras
,
E.
, and
Xiao
,
F.
,
2017
, “
Water Extraction From High Moisture Lignite by Means of Efficient Integration of Waste Heat and Water Recovery Technologies With Flue Gas Pre-Drying System
,”
Appl. Therm. Eng.
,
110
, pp.
442
456
.
12.
Xu
,
C.
,
Xu
,
G.
,
Yang
,
Y.
,
Zhao
,
S.
,
Zhang
,
K.
, and
Zhang
,
D.
,
2015
, “
An Improved Configuration of Low-Temperature Pre-Drying Using Waste Heat Integrated in an Air-Cooled Lignite Fired Power Plant
,”
Appl. Therm. Eng.
,
90
, pp.
312
321
.
13.
Han
,
X.
,
Liu
,
M.
,
Wu
,
K.
,
Chen
,
W.
,
Xiao
,
F.
, and
Yan
,
J.
,
2016
, “
Exergy Analysis of the Flue Gas Pre-Dried Lignite-Fired Power System Based on the Boiler With Open Pulverizing System
,”
Energy
,
106
, pp.
285
300
.
14.
Xu
,
C.
,
Xu
,
G.
,
Fang
,
Y.
,
Zhou
,
L.
,
Yang
,
Y.
, and
Zhang
,
D.
,
2014
, “
A Novel Lignite Pre-Drying System Incorporating a Supplementary Steam Cycle Integrated With a Lignite Fired Supercritical Power Plant
,”
Energy Procedia
,
61
, pp.
1360
1363
.
15.
Wang
,
J.
,
Fan
,
W.
,
Li
,
Y.
,
Xiao
,
M.
,
Wang
,
K.
, and
Ren
,
P.
,
2012
, “
The Effect of Air Staged Combustion on NOx Emissions in Dried Lignite Combustion
,”
Energy
,
37
(
1
), pp.
725
736
.
16.
Han
,
X.
,
Liu
,
M.
,
Zhai
,
M.
,
Chong
,
D.
,
Yan
,
J.
, and
Xiao
,
F.
,
2015
, “
Investigation on the Off-Design Performances of Flue Gas Pre-Dried Lignite-Fired Power System Integrated With Waste Heat Recovery at Variable External Working Conditions
,”
Energy
,
90
(Pt. 2), pp.
1743
1758
.
17.
Agraniotis
,
M.
,
Koumanakos
,
A.
,
Doukelis
,
A.
,
Karellas
,
S.
, and
Kakaras
,
E.
,
2012
, “
Investigation of Technical and Economic Aspects of Pre-Dried Lignite Utilisation in a Modern Lignite Power Plant Towards Zero CO2 Emissions
,”
Energy
,
45
(
1
), pp.
134
141
.
18.
Atsonios
,
K.
,
Violidakis
,
I.
,
Sfetsioris
,
K.
,
Rakopoulos
,
D. C.
,
Grammelis
,
P.
, and
Kakaras
,
E.
,
2016
, “
Pre-Dried Lignite Technology Implementation in Partial Load/Low Demand Cases for Flexibility Enhancement
,”
Energy
,
96
, pp.
427
436
.
19.
Agraniotis
,
M.
,
Stamatis
,
D.
,
Grammelis
,
P.
, and
Kakaras
,
E.
,
2010
, “
Dry Lignite Cofiring in a Greek Utility Boiler: Experimental Activities and Numerical Simulations
,”
Energy Fuels
,
24
(
10
), pp.
5464
5473
.
20.
Agraniotis
,
M.
,
Stamatis
,
D.
,
Grammelis
,
P.
, and
Kakaras
,
E.
,
2009
, “
Numerical Investigation on the Combustion Behaviour of Pre-Dried Greek Lignite
,”
Fuel
,
88
(
12
), pp.
2385
2391
.
21.
Drosatos
,
P.
,
Nikolopoulos
,
N.
,
Nikolopoulos
,
A.
,
Papapavlou
,
C.
,
Grammelis
,
P.
, and
Kakaras
,
E.
,
2017
, “
Numerical Examination of an Operationally Flexible Lignite-Fired Boiler Including Its Convective Section Using as Supporting Fuel Pre-Dried Lignite
,”
Fuel Process Technol.
,
166
, pp.
237
257
.
22.
Drosatos
,
P.
,
Nikolopoulos
,
N.
,
Agraniotis
,
M.
, and
Kakaras
,
E.
,
2016
, “
Numerical Investigation of Firing Concepts for a Flexible Greek Lignite-Fired Power Plant
,”
Fuel Process Technol.
,
142
, pp.
370
395
.
23.
Agraniotis
,
M.
,
Grammelis
,
P.
,
Papapavlou
,
C.
, and
Kakaras
,
E.
,
2009
, “
Experimental Investigation on the Combustion Behaviour of Pre-Dried Greek Lignite
,”
Fuel Process Technol.
,
90
(
9
), pp.
1071
1079
.
24.
Lewtak
,
R.
,
Pawlak-Kruczek
,
H.
, and
Ostrycharczyk
,
M.
,
2015
, “
Experimental and Numerical Study of Pulverized Lignite Combustion in Air and Oxy-Fuel Conditions—Part1: Experimental Setup and the Mathematical Model
,”
40th International Technical Conference on Clean Coal and Fuel Systems
, Clearwater, FL, May 31–June 4, pp. 241–253.
25.
Pawlak-Kruczek
,
H.
,
Lewtak
,
R.
, and
Ostrycharczyk
,
M.
,
2015
, “
Experimental and Numerical Study of Pulverized Lignite Combustion in Air and Oxy-Fuel Conditions. Part 2: Experimental and Numerical Results
,”
40th International Technical Conference on Clean Coal and Fuel Systems, Clearwater, FL, May 31–June 4, pp. 254–265.
26.
Zhao
,
H.
,
Geng
,
X.
,
Yu
,
J.
,
Xin
,
B.
,
Yin
,
F.
, and
Tahmasebi
,
A.
,
2016
, “
Effects of Drying Method on Self-Heating Behavior of Lignite During Low-Temperature Oxidation
,”
Fuel Process Technol.
,
151
, pp.
11
18
.
27.
PKN
,
2002
, “
Paliwa stałe - Oznaczanie zawartości popiołu metodą wagową
,” Polski Komitet Normalizacyjny, Warsaw, Poland, Standard No. PN-G-04512:1980/Az1:2002.
28.
ISO
,
2009
, “
Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 1928:2009
https://www.iso.org/standard/41592.html.
29.
PKN
,
2007
, “
Paliwa stałe—Oznaczanie całkowitego węgla, wodoru i azotu—Metody instrumentalne
,” Polski Komitet Normalizacyjny, Warsaw, Poland, Standard No. PKN-ISO/TS 12902:2007.
30.
PKN
,
2000
, “
Sita kontrolne—Wymagania techniczne i badania—Sita kontrolne z tkaniny z drutu
,” Polski Komitet Normalizacyjny, Warsaw, Poland, Standard No. PN-ISO 3310-1:2000.
31.
Pronobis
,
M.
,
2005
, “
Evaluation of the Influence of Biomass Co-Combustion on Boiler Furnace Slagging by Means of Fusibility Correlations
,”
Biomass Bioenergy
,
28
(
4
), pp.
375
383
.
32.
BSI
,
1987
, “
Methods for Assessing Thermal Performance of Boilers for Steam, Hot Water and High Temperature Heat Transfer Fluids—Part 1: Concise Procedure
,” British Standards Institute, London, Standard No.
BS 845-1:1987
.https://shop.bsigroup.com/ProductDetail/?pid=000000000000923110
33.
CEN (European Committee for Standardisation)
,
2003
, “
Shell Boilers—Part 11: Acceptance Tests
,” British Standards Institute, London, Standard No.
BS EN 12953-11:2003
.https://shop.bsigroup.com/ProductDetail/?pid=000000000030011361
34.
CEN (European Comitte for Standardisation),
2003
, “
Water-Tube Boilers and Auxiliary Installations—Part 15: Acceptance Tests
,” British Standards Institute, London, Standard No.
BS EN 12952-15:2003
.https://shop.bsigroup.com/ProductDetail/?pid=000000000030011352
35.
Baum
,
M. M.
, and
Street
,
P. J.
,
1971
, “
Predicting the Combustion Behaviour of Coal Particles
,”
Sci. Technol.
,
3
(
5
), pp.
231
243
.
36.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. Combust.
,
16
(
1
), pp.
719
729
.
37.
Rokni
,
E.
,
Hsein Chi
,
H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
.
You do not currently have access to this content.