The Achates Power Inc. (API) opposed-piston (OP) engine architecture provides fundamental advantages that increase thermal efficiency over current poppet valve 4 stroke engines. In this paper, the combustion performance of diesel and gasoline compression ignition (GCI) combustion in a medium-duty, OP engine are shown. By using GCI, NOx and/or soot reductions can be seen compared with diesel combustion at similar or increased thermal efficiencies. The results also show that high combustion efficiency can be achieved with GCI combustion with acceptable noise and stability over the same load range as diesel combustion in an OP engine.

References

1.
Pirault
,
J.-P.
, and
Flint
,
M.
,
2009
,
Opposed Piston Engines: Evolution, Use, and Future Applications
,
SAE International
,
Warrendale, PA
.
2.
Barsanti
,
E.
, and
Matteucci
,
F.
,
1858
, “
Motore a Pistoni Contrapposti
,” Piedmont Patent No. 700.
3.
Barsanti
,
E.
, and
Matteucci
,
F.
,
1861
, “
Improved Apparatus for Obtaining Motive Power From Explosive Compounds
,” Great Britain Patent No. 3270.
4.
Junkers
,
H.
,
1917
, “
Cylinder of Internal-Combustion Engines and Other Similar Machines
,” U.S. Patent No. 1,231,903.
5.
Junkers
,
H.
,
1936
, “
Engine
,” U.S. Patent No. 2,031,318.
6.
Herold
,
R.
,
Wahl
,
M.
,
Regner
,
G.
,
Lemke
,
J.
, and
Foster
D.
,
2011
, “
Thermodynamic Benefits of Opposed-Piston Two-Stroke Engines
,”
SAE
Technical Paper No. 2011-01-2216.
7.
Redon
,
F.
,
Kalebjian
,
C.
,
Kessler
,
J.
,
Rakovec
,
N.
,
Headley
,
J.
,
Regner
,
G.
, and
Koszewnik
,
J.
,
2014
, “
Meeting Stringent 2025 Emissions and Fuel Efficiency Regulations With an Opposed-Piston, Light-Duty Diesel Engine
,”
SAE
Technical Paper No. 2014-01-1187.
8.
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions
,”
SAE
Technical Paper No. 2009-01-1442.
9.
Sellnau
,
M.
,
Foster
,
M.
,
Moore
,
W.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Klemm
,
W.
,
2016
, “
Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions
,”
SAE Int. J. Engines
,
9
(
2
), pp.
1002
1020
.
10.
Kalghatgi
,
G.
,
Risberg
,
P.
, and
Ångström
,
H.
,
2007
, “
Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison With a Diesel Fuel
,”
SAE
Technical Paper No. 2007-01-0006.
11.
Ra
,
Y.
,
Loeper
,
P.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D.
,
Reitz
,
R.
, and
Durrett
,
R.
,
2012
, “
Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1109
1132
.
12.
Manente
,
V.
,
Zander
,
C.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2010
, “
An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency From Idle to Max Load Using Gasoline Partially Premixed Combustion
,”
SAE
Technical Paper No. 2010-01-2198.
13.
Benajes
,
J.
,
Martin
,
J.
,
Novella
,
R.
, and
De Lima
,
D.
,
2014
, “
Analysis of the Load Effect on the Partially Premixed Combustion Concept in a 2-Stroke HSDI Diesel Engine Fueled With Conventional Gasoline
,”
SAE
Technical Paper No. 2014-01-1291.
14.
Dec
,
J.
,
Yang
,
Y.
,
Dernotte
,
J.
, and
Ji
,
C.
,
2015
, “
Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC)
,”
SAE Int. J. Engines
,
8
(
3
), pp.
935
955
.
15.
Subramanian
,
S.
, and
Ciatti
,
S. A.
,
2011
, “
Low Cetane Fuels in Compression Ignition Engines to Achieve LTC
,”
ASME Fall Technical Conference
,
Morgantown, WV
,
ASME
Paper No. ICEF2011-60014.
16.
Kavuri
,
C.
, and
Kokjohn
,
S.
,
2018
, “
Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy—A Pathway for Premixed Compression Ignition High Load Operation
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082201
.
17.
Salvi
,
A.
,
Hanson
,
R.
,
Zermeno
,
R.
,
Regner
,
G.
,
Sellnau
,
M.
, and
Redon
,
F.
,
2018
, “
Initial Results on a New Light Duty 2.7L Opposed Piston Gasoline Compression Ignition Multi Cylinder Engine
,”
ASME Fall Technical Conference
,
San Diego, CA
,
ASME
Paper No. ICEF 2018-9610.
18.
Moiz
,
A.
,
Kodavasal
,
J.
,
Som
,
S.
,
Hanson
,
R.
,
Redon
,
F.
, and
Zermeno
,
R.
,
2018
, “
Computational Fluid Dynamics Simulation of an Opposed-Piston Two-Stroke Gasoline Compression Ignition Engine
,”
ASME Fall Technical Conference
,
San Diego, CA
,
ASME
Paper No. ICEF2018-9713.
19.
Sellnau
,
M.
,
Hoyer
,
K.
,
Moore
,
W.
,
Foster
,
M.
,
Sinnamon
,
J.
, and
Klemm
,
W.
,
2018
, “
Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions
,”
SAE
Technical Paper No. 2018-01-0901.
20.
Kolodziej
,
C.
,
Sellnau
,
M.
,
Cho
,
K.
, and
Cleary
,
D.
,
2016
, “
Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels
,”
SAE Int. J. Engines
,
9
(
2
), pp.
979
1001
.
You do not currently have access to this content.