Abstract

The first goal is to propose a two-variable equation for predicting the viscosity of zinc oxide-SAE50 nano-lubricant. In this way, the curve fitting was applied on laboratory data. Laboratory data have been reported in the temperatures ranging from 25 to 50 °C of and the nano-particles concentrations ranging from 0.125% to 1.5% previously. The presence of nano-particles leads to intensify the pressure descent and heat transfer, simultaneously. Therefore, the second goal was to evaluate the influence of nano-particles on the pressure descent and heat transfer. To achieve this goal, using existing relationships, heat transfer and pressure drop were estimated using nano-lubricant properties. Findings showed that the pressure drop ratio and coefficient of heat transfer augmented with an increase in ZnO concentration. Furthermore, calculations revealed that thermal performance factor enhances with increasing temperature and had a maximum value at volume concentration of 1%. It means that volume concentration of 1% is an optimal point in the preparation of this nano-lubricant.

References

1.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,
Argonne National Lab.
,
IL
.
2.
Venkatesan
,
S. P.
, and
Kadiresh
,
P. N.
,
2019
, “
Combustion Performance Study of Aqueous Aluminum Oxide Nanofluid Blends in Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042203
. 10.1115/1.4042086
3.
Wong
,
K. V.
, and
Bachelier
,
B.
,
2014
, “
Carbon Nanotubes Used for Renewable Energy Applications and Environmental Protection/Remediation: A Review
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021601
. 10.1115/1.4024917
4.
Gilani
,
N.
,
Hendijani
,
A. D.
, and
Seyedin
,
F.
,
2016
, “
Increasing the Heating Value of Ethanol Using Functionalized Carbon Nanotubes
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012001
. 10.1115/1.4033791
5.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
6.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2019
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042003
. 10.1115/1.4042004
7.
Shamshirband
,
S.
,
Malvandi
,
A.
,
Karimipour
,
A.
,
Goodarzi
,
M.
,
Afrand
,
M.
,
Petković
,
D.
,
Dahari
,
M.
, and
Mahmoodian
,
N.
,
2015
, “
Performance Investigation of Micro- and Nano-Sized Particle Erosion in a 90 deg Elbow Using an ANFIS Model
,”
Powder Technol.
,
284
, pp.
336
343
. 10.1016/j.powtec.2015.06.073
8.
Ranjbarzadeh
,
R.
,
Akhgar
,
A.
,
Musivand
,
S.
, and
Afrand
,
M.
,
2018
, “
Effects of Graphene Oxide-Silicon Oxide Hybrid Nanomaterials on Rheological Behavior of Water at Various Time Durations and Temperatures: Synthesis, Preparation and Stability
,”
Powder Technol.
,
335
, pp.
375
387
. 10.1016/j.powtec.2018.05.036
9.
Ghasemi
,
A.
,
Hassani
,
M.
,
Goodarzi
,
M.
,
Afrand
,
M.
, and
Manafi
,
S.
,
2019
, “
Appraising Influence of COOH-MWCNTs on Thermal Conductivity of Antifreeze Using Curve Fitting and Neural Network
,”
Phys. A
,
514
, pp.
36
45
. 10.1016/j.physa.2018.09.004
10.
Hemmat Esfe
,
M.
,
Kamyab
,
M. H.
,
Afrand
,
M.
, and
Amiri
,
M. K.
,
2018
, “
Using Artificial Neural Network for Investigating of Concurrent Effects of Multi-Walled Carbon Nanotubes and Alumina Nano-Particles on the Viscosity of 10W-40 Engine oil
,”
Phys. A
,
510
, pp.
610
624
. 10.1016/j.physa.2018.06.029
11.
Eshgarf
,
H.
, and
Afrand
,
M.
,
2016
, “
An Experimental Study on Rheological Behavior of non-Newtonian Hybrid Nano-Coolant for Application in Cooling and Heating Systems
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
221
227
. 10.1016/j.expthermflusci.2016.03.015
12.
Safdari Shadloo
,
M.
,
2019
, “
Numerical Simulation of Compressible Flows by Lattice Boltzmann Method
,”
Numer. Heat Transfer, Part A
,
75
(
3
), pp.
167
182
. 10.1080/10407782.2019.1580053
13.
Almasi
,
F.
,
Shadloo
,
M.
,
Hadjadj
,
A.
,
Ozbulut
,
M.
,
Tofighi
,
N.
, and
Yildiz
,
M.
,
2019
, “
Numerical Simulations of Multi-Phase Electro-Hydrodynamics Flows Using a Simple Incompressible Smoothed Particle Hydrodynamics Method
,”
Comput. Math. Appl.
10.1016/j.camwa.2019.10.029
14.
Hopp-Hirschler
,
M.
,
Shadloo
,
M. S.
, and
Nieken
,
U.
,
2019
, “
Viscous Fingering Phenomena in the Early Stage of Polymer Membrane Formation
,”
J. Fluid Mech.
,
864
, pp.
97
140
. 10.1017/jfm.2019.4
15.
Hopp-Hirschler
,
M.
,
Shadloo
,
M. S.
, and
Nieken
,
U.
,
2018
, “
A Smoothed Particle Hydrodynamics Approach for Thermo-Capillary Flows
,”
Comput. Fluids
,
176
, pp.
1
19
. 10.1016/j.compfluid.2018.09.010
16.
Sadeghi
,
R.
,
Shadloo
,
M. S.
, and
Hooman
,
K.
,
2016
, “
Numerical Investigation of the Natural Convection Film Boiling Around Elliptical Tubes
,”
Numer. Heat Transfer, Part A
,
70
(
7
), pp.
707
722
. 10.1080/10407782.2016.1214484
17.
Komeilibirjandi
,
A.
,
Raffiee
,
A. H.
,
Maleki
,
A.
,
Nazari
,
M. A.
, and
Shadloo
,
M. S.
,
2020
, “
Thermal Conductivity Prediction of Nanofluids Containing CuO Nanoparticles by Using Correlation and Artificial Neural Network
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2679
2689
. 10.1007/s10973-019-08838-w
18.
Abdollahzadeh Jamalabadi
,
M. Y.
,
Ghasemi
,
M.
,
Alamian
,
R.
,
Wongwises
,
S.
,
Afrand
,
M.
, and
Shadloo
,
M. S.
,
2019
, “
Modeling of Subcooled Flow Boiling with Nanoparticles Under the Influence of a Magnetic Field
,”
Symmetry
,
11
(
10
), p.
1275
. 10.3390/sym11101275
19.
Abdollahzadeh Jamalabadi
,
M. Y.
,
Alamian
,
R.
,
Yan
,
W.-M.
,
Li
,
L. K.
,
Leveneur
,
S.
, and
Safdari Shadloo
,
M.
,
2019
, “
Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers
,”
Symmetry
,
11
, p.
1353
. 10.3390/sym11111353
20.
Shadloo
,
M.
, and
Hadjadj
,
A.
,
2017
, “
Laminar-turbulent Transition in Supersonic Boundary Layers with Surface Heat Transfer: a Numerical Study
,”
Numer. Heat Transfer, Part A
,
72
(
1
), pp.
40
53
. 10.1080/10407782.2017.1353380
21.
Sharma
,
S.
,
Shadloo
,
M. S.
,
Hadjadj
,
A.
, and
Kloker
,
M. J.
,
2019
, “
Control of Oblique-Type Breakdown in a Supersonic Boundary Layer Employing Streaks
,”
J. Fluid Mech.
,
873
, pp.
1072
1089
. 10.1017/jfm.2019.435
22.
Khodadadi
,
H.
,
Aghakhani
,
S.
,
Majd
,
H.
,
Kalbasi
,
R.
,
Wongwises
,
S.
, and
Afrand
,
M.
,
2018
, “
A Comprehensive Review on Rheological Behavior of Mono and Hybrid Nanofluids: Effective Parameters and Predictive Correlations
,”
Int. J. Heat Mass Transfer
,
127
, pp.
997
1012
. 10.1016/j.ijheatmasstransfer.2018.07.103
23.
Hemmat Esfe
,
M.
,
Afrand
,
M.
,
Rostamian
,
S. H.
, and
Toghraie
,
D.
,
2017
, “
Examination of Rheological Behavior of MWCNTs/ZnO-SAE40 Hybridnano-Lubricants Under Various Temperatures and Solid Volume Fractions
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
384
390
. 10.1016/j.expthermflusci.2016.07.011
24.
Afrand
,
M.
,
Najafabadi
,
K. N.
, and
Akbari
,
M.
,
2016
, “
Effects of Temperature and Solid Volume Fraction on Viscosity of SiO2-MWCNTs/SAE40 Hybrid Nanofluid as a Coolant and Lubricant in Heat Engines
,”
Appl. Therm. Eng.
,
102
, pp.
45
54
. 10.1016/j.applthermaleng.2016.04.002
25.
Asadi
,
M.
, and
Asadi
,
A.
,
2016
, “
Dynamic Viscosity of MWCNT/ZnO–Engine oil Hybrid Nanofluid: an Experimental Investigation and new Correlation in Different Temperatures and Solid Concentrations
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
41
45
. 10.1016/j.icheatmasstransfer.2016.05.019
26.
Dardan
,
E.
,
Afrand
,
M.
, and
Isfahani
,
A. M.
,
2016
, “
Effect of Suspending Hybrid Nano-Additives on Rheological Behavior of Engine oil and Pumping Power
,”
Appl. Therm. Eng.
,
109
, pp.
524
534
. 10.1016/j.applthermaleng.2016.08.103
27.
Esfe
,
M. H.
,
Afrand
,
M.
,
Yan
,
W.-M.
,
Yarmand
,
H.
,
Toghraie
,
D.
, and
Dahari
,
M.
,
2016
, “
Effects of Temperature and Concentration on Rheological Behavior of MWCNTs/SiO2 (20–80)-SAE40 Hybrid Nano-Lubricant
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
133
138
. 10.1016/j.icheatmasstransfer.2016.05.015
28.
Yang
,
Y.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Wu
,
G.
,
2006
, “
Thermal and Rheological Properties of Carbon Nanotube-in-oil Dispersions
,”
J. Appl. Phys.
,
99
, p.
114307
. 10.1063/1.2193161
29.
Chen
,
L.
, and
Xie
,
H.
,
2009
, “
Silicon oil Based Multiwalled Carbon Nanotubes Nanofluid with Optimized Thermal Conductivity Enhancement
,”
Colloids Surf., A
,
352
(1
–3
), pp.
136
140
. 10.1016/j.colsurfa.2009.10.015
30.
Vakili-Nezhaad
,
G.
, and
Dorany
,
A.
,
2012
, “
Effect of Single-Walled Carbon Nanotube on the Viscosity of Lubricants
,”
Energy Procedia
,
14
, pp.
512
517
. 10.1016/j.egypro.2011.12.967
31.
Agarwal
,
D. K.
,
Vaidyanathan
,
A.
, and
Kumar
,
S. S.
,
2013
, “
Synthesis and Characterization of Kerosene–Alumina Nanofluids
,”
Appl. Therm. Eng.
,
60
(
1-2
), pp.
275
284
. 10.1016/j.applthermaleng.2013.06.049
32.
Shima
,
P.
,
Philip
,
J.
, and
Raj
,
B.
,
2010
, “
Synthesis of Aqueous and Nonaqueous Iron Oxide Nanofluids and Study of Temperature Dependence on Thermal Conductivity and Viscosity
,”
J. Phys. Chemistry C
,
114
(
44
), pp.
18825
18833
. 10.1021/jp107447q
33.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
. 10.1016/S0142-727X(99)00067-3
34.
Philip
,
J.
,
Shima
,
P.
, and
Raj
,
B.
,
2008
, “
Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids
,”
Nanotechnology
,
19
(
30
), p.
305706
. 10.1088/0957-4484/19/30/305706
35.
Kumar
,
N.
,
Sonawane
,
S. S.
, and
Sonawane
,
S. H.
,
2018
, “
Experimental Study of Thermal Conductivity, Heat Transfer and Friction Factor of Al2O3 Based Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
90
, pp.
1
10
. 10.1016/j.icheatmasstransfer.2017.10.001
36.
Li
,
D.
,
Hong
,
B.
,
Fang
,
W.
,
Guo
,
Y.
, and
Lin
,
R.
,
2010
, “
Preparation of Well-Dispersed Silver Nanoparticles for oil-Based Nanofluids
,”
Ind. Eng. Chem. Res.
,
49
(
4
), pp.
1697
1702
. 10.1021/ie901173h
37.
Liu
,
M.-S.
,
Lin
,
M. C.-C.
,
Tsai
,
C.
, and
Wang
,
C.-C.
,
2006
, “
Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3028
3033
. 10.1016/j.ijheatmasstransfer.2006.02.012
38.
Parekh
,
K.
, and
Lee
,
H. S.
,
2010
, “
Magnetic Field Induced Enhancement in Thermal Conductivity of Magnetite Nanofluid
,”
J. Appl. Phys.
,
107
(
9
), p.
09A310
. 10.1063/1.3348387
39.
Yu
,
W.
,
Xie
,
H.
,
Chen
,
L.
, and
Li
,
Y.
,
2010
, “
Enhancement of Thermal Conductivity of Kerosene-Based Fe3O4 Nanofluids Prepared via Phase-Transfer Method
,”
Colloids Surf., A
,
355
(
1–3
), pp.
109
113
. 10.1016/j.colsurfa.2009.11.044
40.
Ambreen
,
T.
, and
Kim
,
M.-H.
,
2018
, “
Heat Transfer and Pressure Drop Correlations of Nanofluids: a State of art Review
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
564
583
. 10.1016/j.rser.2018.03.108
41.
Abdelrazek
,
A. H.
,
Alawi
,
O. A.
,
Kazi
,
S. N.
,
Yusoff
,
N.
,
Chowdhury
,
Z.
, and
Sarhan
,
A. A.
,
2018
, “
A new Approach to Evaluate the Impact of Thermophysical Properties of Nanofluids on Heat Transfer and Pressure Drop
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
161
170
. 10.1016/j.icheatmasstransfer.2018.05.002
42.
Esfe
,
M. H.
,
Saedodin
,
S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2014
, “
Heat Transfer Characteristics and Pressure Drop of COOH-Functionalized DWCNTs/Water Nanofluid in Turbulent Flow at low Concentrations
,”
Int. J. Heat Mass Transfer
,
73
, pp.
186
194
. 10.1016/j.ijheatmasstransfer.2014.01.069
43.
Baba
,
M. S.
,
Raju
,
A. S. R.
, and
Rao
,
M. B.
,
2018
, “
Heat Transfer Enhancement and Pressure Drop of Fe3O4-Water Nanofluid in a Double Tube Counter Flow Heat Exchanger with Internal Longitudinal Fins
,”
Case Studies Thermal Eng.
,
12
, pp.
600
607
. 10.1016/j.csite.2018.08.001
44.
Esfe
,
M. H.
,
Saedodin
,
S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2014
, “
Thermophysical Properties, Heat Transfer and Pressure Drop of COOH-Functionalized Multi Walled Carbon Nanotubes/Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
58
, pp.
176
183
. 10.1016/j.icheatmasstransfer.2014.08.037
45.
Shahsavani
,
E.
,
Afrand
,
M.
, and
Kalbasi
,
R.
,
2018
, “
Using Experimental Data to Estimate the Pressure Drop and Heat Transfer of non-Newtonian Nanofluid Flow Through a Circular Tube: Applicable for use in Heat Exchangers
,”
Appl. Therm. Eng.
,
129
, pp.
1573
1581
. 10.1016/j.applthermaleng.2017.10.140
46.
Sepyani
,
K.
,
Afrand
,
M.
, and
Hemmat Esfe
,
M.
,
2017
, “
An Experimental Evaluation of the Effect of ZnO Nano-Particles on the Rheological Behavior of Engine oil
,”
J. Mol. Liq.
,
236
, pp.
198
204
. 10.1016/j.molliq.2017.04.016
47.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least Squares Estimation of Parameters
,”
J. Soc. Industrial Appl. Math.
,
11
(
2
), pp.
431
441
. 10.1137/0111030
48.
Holman
,
J.
,
2010
,
Heat Transfer
, 10th ed,
Mc-Graw-Hill Companies Inc
,
New York, NY
.
49.
Petukhov
,
B. S.
,
1970
, “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties,”
Advances in Heat Transfer
,
P. H.
James
, and
F. I.
Thomas
,
6
,
503
564
.
50.
Aberoumand
,
S.
,
Jafarimoghaddam
,
A.
,
Moravej
,
M.
,
Aberoumand
,
H.
, and
Javaherdeh
,
K.
,
2016
, “
Experimental Study on the Rheological Behavior of Silver-Heat Transfer oil Nanofluid and Suggesting two Empirical Based Correlations for Thermal Conductivity and Viscosity of oil Based Nanofluids
,”
Appl. Therm. Eng.
,
101
, pp.
362
372
. 10.1016/j.applthermaleng.2016.01.148
You do not currently have access to this content.