Abstract

The forced and natural flows of fluid within an annulus caused by the rotation of cylinders and temperature differences of the inner and outer walls are observed in various engineering applications. In this research, the laminar flow regime and mixed convection inside a ring-shaped horizontal concentric and eccentric space for an incompressible fluid are studied in the existence of an axial magnetic field. The present work is the first effort to investigate the influence of a magnetic field on flow and combined-convection heat exchange characteristics within an annulus with a cold outer cylinder and an inner hot cylinder. Here, the properties of the flow and heat transfer characteristics are studied using the finite volume method. Numerical procedures are mainly investigated for recognizing the influence of Hartmann number (in the range of 0 ≤ Ha ≤ 100), as the representative of the magnetic force, on velocity components, Nusselt number, streamlines, and isothermal lines. One of the notable effects is that when Ha number increases, it will reduce the vorticity of the fluid and buoyancy forces. As a result, streamlines and isothermal lines can be seen more constant as regular concentric circles. A rise in Ha number decreases the range of local Nu number variation for both cylinders. The average Nu number for the outer and inner cylinders has different trends when Ha number increases. Taking concentric cylinders as an example, this parameter for the inner and the outer cylinders increases and decreases by about 1.2 and 1.6, respectively.

References

1.
Abedini
,
A.
,
Emadoddin
,
S.
, and
Armaghani
,
T.
,
2019
, “
Numerical Analysis of Mixed Convection of Different Nanofluids in Concentric Annulus
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
4
), pp.
1506
1525
. 10.1108/hff-06-2018-0337
2.
Yoo
,
J.-S.
,
1998
, “
Mixed Convection of Air Between Two Horizontal Concentric Cylinders With a Cooled Rotating Outer Cylinder
,”
Int. J. Heat Mass Transfer
,
41
(
2
), pp.
293
302
. 10.1016/S0017-9310(97)00141-5
3.
Selimefendigil
,
F.
,
Öztop
,
H. F.
, and
Chamkha
,
A. J.
,
2017
, “
Analysis of Mixed Convection of Nanofluid in a 3D lid-Driven Trapezoidal Cavity With Flexible Side Surfaces and Inner Cylinder
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
40
51
. 10.1016/j.icheatmasstransfer.2017.06.015
4.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2019
, “
Corrugated Conductive Partition Effects on MHD Free Convection of CNT-Water Nanofluid in a Cavity
,”
Int. J. Heat Mass Transfer
,
129
, pp.
265
277
. 10.1016/j.ijheatmasstransfer.2018.09.101
5.
Zhang
,
Y.
,
Zhang
,
M.
, and
Bai
,
Y.
,
2017
, “
Unsteady Flow and Heat Transfer of Power-Law Nanofluid Thin Film Over a Stretching Sheet With Variable Magnetic Field and Power-Law Velocity Slip Effect
,”
J. Taiwan Inst. Chem. Eng.
,
70
, pp.
104
110
. 10.1016/j.jtice.2016.10.052
6.
Seyyedi
,
S. M.
,
Dogonchi
,
A.
,
Ganji
,
D.
, and
Hashemi-Tilehnoee
,
M.
,
2019
, “
Entropy Generation in a Nanofluid-Filled Semi-Annulus Cavity by Considering the Shape of Nanoparticles
,”
J. Therm. Anal. Calorim.
,
138
(
2
), pp.
1607
1621
. 10.1007/s10973-019-08130-x
7.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Modeling and Optimization of MHD Mixed Convection in a Lid-Driven Trapezoidal Cavity Filled With Alumina–Water Nanofluid: Effects of Electrical Conductivity Models
,”
Int. J. Mech. Sci.
,
136
, pp.
264
278
. 10.1016/j.ijmecsci.2017.12.035
8.
Chamkha
,
A. J.
,
Dogonchi
,
A.
, and
Ganji
,
D.
,
2018
, “
Magnetohydrodynamic Nanofluid Natural Convection in a Cavity Under Thermal Radiation and Shape Factor of Nanoparticles Impacts: A Numerical Study Using CVFEM
,”
Appl. Sci.
,
8
(
12
), p.
2396
. 10.3390/app8122396
9.
Kimura
,
T.
,
Takeuchi
,
M.
, and
Miyagawa
,
K.
,
1995
, “
Effects of Inner Rotating Horizontal Cylinder on Heat Transfer in a Differentially Heated Enclosure
,”
Heat Transfer Japan. Res.
,
24
(
6
), pp.
249
255
.
10.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
Forced Convection of Ferrofluids in a Vented Cavity With a Rotating Cylinder
,”
Int. J. Therm. Sci.
,
86
, pp.
258
275
. 10.1016/j.ijthermalsci.2014.07.007
11.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2015
, “
Numerical Investigation and Reduced Order Model of Mixed Convection at a Backward Facing Step With a Rotating Cylinder Subjected to Nanofluid
,”
Comput. Fluids
,
109
, pp.
27
37
. 10.1016/j.compfluid.2014.12.007
12.
Dogonchi
,
A.
,
Ismael
,
M. A.
,
Chamkha
,
A. J.
, and
Ganji
,
D.
,
2019
, “
Numerical Analysis of Natural Convection of Cu–Water Nanofluid Filling Triangular Cavity With Semicircular Bottom Wall
,”
J. Therm. Anal. Calorim.
,
135
(
6
), pp.
3485
3497
. 10.1007/s10973-018-7520-4
13.
Sorgun
,
M.
,
Murat Ozbayoglu
,
A.
, and
Evren Ozbayoglu
,
M.
,
2015
, “
Support Vector Regression and Computational Fluid Dynamics Modeling of Newtonian and Non-Newtonian Fluids in Annulus With Pipe Rotation
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032901
. 10.1115/1.4028694
14.
Sorgun
,
M.
,
Ozbayoglu
,
M. E.
, and
Aydin
,
I.
,
2010
, “
Modeling and Experimental Study of Newtonian Fluid Flow in Annulus
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
033102
. 10.1115/1.4002243
15.
Sodagar-Abardeh
,
J.
,
Ebrahimi-Moghadam
,
A.
,
Farzaneh-Gord
,
M.
, and
Norouzi
,
A.
,
2019
, “
Optimizing Chevron Plate Heat Exchangers Based on the Second Law of Thermodynamics and Genetic Algorithm
,”
J. Therm. Anal. Calorim.
,
139
, pp.
3563
3576
. https://doi.org/10.1007/s10973-019-08742-3
16.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
17.
Mahian
,
O.
,
Pop
,
I.
,
Sahin
,
A. Z.
,
Oztop
,
H. F.
, and
Wongwises
,
S.
,
2013
, “
Irreversibility Analysis of a Vertical Annulus Using TiO2/Water Nanofluid With MHD Flow Effects
,”
Int. J. Heat Mass Transfer
,
64
, pp.
671
679
. 10.1016/j.ijheatmasstransfer.2013.05.001
18.
Tayebi
,
T.
,
Chamkha
,
A. J.
,
Djezzar
,
M.
, and
Bouzerzour
,
A.
,
2017
, “
Natural Convective Nanofluid Flow in an Annular Space Between Confocal Elliptic Cylinders
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011010
. 10.1115/1.4034599
19.
Khan
,
S. U.
, and
Tlili
,
I.
,
2020
, “
Significance of Activation Energy and Effective Prandtl Number in Accelerated Flow of Jeffrey Nanoparticles With Gyrotactic Microorganisms
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112101
.
20.
Zhang
,
T.
,
Khan
,
S. U.
,
Imran
,
M.
,
Tlili
,
I.
,
Waqas
,
H.
, and
Ali
,
N.
,
2020
, “
Activation Energy and Thermal Radiation Aspects in Bioconvection Flow of Rate Type Nanoparticles Configured by a Stretching/Shrinking Disk
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112102
. https://doi.org/10.1115/1.4047249
21.
Chamkha
,
A. J.
,
Dogonchi
,
A.
, and
Ganji
,
D.
,
2019
, “
Magneto-hydrodynamic Flow and Heat Transfer of a Hybrid Nanofluid in a Rotating System Among two Surfaces in the Presence of Thermal Radiation and Joule Heating
,”
AIP Adv.
,
9
(
2
), p.
025103
. 10.1063/1.5086247
22.
Cao
,
Y.
,
Bai
,
Y.
,
Du
,
J.
, and
Rashidi
,
S.
,
2020
, “
A CFD Investigation on the Effect of the Angular Velocities of Hot and Cold Turbulator Cylinders on the Heat Transfer Characteristics of Nanofluid Flows Within a Porous Cavity
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112104
. 10.1115/1.4047253
23.
Edalati-nejad
,
Ali
,
Fanaee
,
Sayyed Aboozar
, and
Khadem
,
Javad
,
2019
, “
The Unsteady Investigation of Methane-Air Premixed Counterflow Flame Into Newly Proposed Plus-Shaped Channel over Palladium Catalyst
,”
Energy
,
186
, p.
115833
. https://doi.org/10.1016/j.energy.2019.07.163
24.
Abad
,
J. M. N.
,
Alizadeh
,
R.
,
Fattahi
,
A.
,
Doranehgard
,
M. H.
,
Alhajri
,
E.
, and
Karimi
,
N.
,
2020
, “
Analysis of Transport Processes in a Reacting Flow of Hybrid Nanofluid Around a Bluff-Body Embedded in Porous Media Using Artificial Neural Network and Particle Swarm Optimization
,”
J. Mol. Liq.
,
313
, p.
113492
. 10.1016/j.molliq.2020.113492
25.
Habib
,
R.
,
Karimi
,
N.
,
Yadollahi
,
B.
,
Doranehgard
,
M. H.
, and
Li
,
L. K.
,
2020
, “
A Pore-Scale Assessment of the Dynamic Response of Forced Convection in Porous Media to Inlet Flow Modulations
,”
Int. J. Heat Mass Transfer
,
153
, p.
119657
. 10.1016/j.ijheatmasstransfer.2020.119657
26.
Edalati-nejad
,
Ali
,
Fanaee
,
Sayyed Aboozar
,
Ghodrat
,
Maryam
,
Salehi
,
Fatemeh
, and
Khadem
,
Javad
,
2020
, “
The Time Dependent Investigation of Methane-Air Counterflow Diffusion Flames with Detailed Kinetic and Pollutant Effects Into a Micro/macro Open Channel
,”
J. Therm. Anal. Calorim.
,
18
(
10
), p.
100603
. https://doi.org/10.1016/j.csite.2020.100603
27.
Saffarian
,
M. R.
,
Moravej
,
M.
, and
Doranehgard
,
M. H.
,
2020
, “
Heat Transfer Enhancement in a Flat Plate Solar Collector With Different Flow Path Shapes Using Nanofluid
,”
Renewable Energy
,
146
, pp.
2316
2329
. 10.1016/j.renene.2019.08.081
28.
Gholamalipour
,
P.
,
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2019
, “
Eccentricity Effects of Heat Source Inside a Porous Annulus on the Natural Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
109
, p.
104367
. 10.1016/j.icheatmasstransfer.2019.104367
29.
Athar
,
K.
,
Doranehgard
,
M. H.
,
Eghbali
,
S.
, and
Dehghanpour
,
H.
,
2020
, “
Measuring Diffusion Coefficients of Gaseous Propane in Heavy Oil at Elevated Temperatures
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2633
2645
. 10.1007/s10973-019-08768-7
30.
Siavashi
,
M.
,
Karimi
,
K.
,
Xiong
,
Q.
, and
Doranehgard
,
M. H.
,
2019
, “
Numerical Analysis of Mixed Convection of Two-Phase Non-Newtonian Nanofluid Flow Inside a Partially Porous Square Enclosure With a Rotating Cylinder
,”
J. Therm. Anal. Calorim.
,
137
(
1
), pp.
267
287
. 10.1007/s10973-018-7945-9
31.
Athar
,
K.
,
Yassin
,
M. R.
, and
Dehghanpour
,
H.
,
2020
, “
Visualizing Interactions Between Liquid Propane and Heavy Oil
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
113003
. 10.1115/1.4047318
32.
Nobari
,
M.
, and
Asgarian
,
A.
,
2008
, “
A Numerical Investigation of Flow and Mixed Convection Inside a Vertical Eccentric Annulus
,”
Numerical Heat Transfer, Part A: Applications
,
55
(
1
), pp.
77
99
. 10.1080/10407780802603105
You do not currently have access to this content.