Abstract

This paper examines the effects of swirl hot co-flow on the combustion behavior of a moderate or intense low oxygen dilution (MILD) burner fueled by a mixture of methane and hydrogen. Toward this goal, the realizable k-ɛ turbulence model, GRI. 2.11 reaction mechanism, and the discrete ordinates radiation model are incorporated into a computational modeling of the reactive flow. The numerical results are, first, favorably compared against the existing experimental data. Subsequently, a number of swirl co-flows are implemented, and structures of the resultant reactive flows are investigated systematically. The outcomes indicate that increasing the swirl velocity leads to the reduction of ignition delay and significantly enhances the reaction completion. The analysis of the spatial distribution of hydroxyl and formyl (OH and HCO) radicals reveals that swirling MILD combustion radially extends the reaction zone in comparison with the conventional MILD combustion. Yet, it reduces the length of the reactive region and allows for the occurrence of heat release in a shorter axial distance from the outlet fuel nozzle. Further, the addition of swirl reduces the production of carbon monoxide through its influences upon flow temperature and generation of formyl radical. However, it is found that swirling hot co-flow intensifies NOx emissions by strengthening of prompt and thermal mechanisms of NOx production. Reducing the temperature of the recycled flue gas is deemed to be an effective way of resolving this issue.

References

1.
Sotoudeh
,
F.
,
Kamali
,
R.
, and
Mousavi
,
S. M.
,
2019
, “
Field Tests and Numerical Modeling of INVELOX Wind Turbine Application in Low Wind Speed Region
,”
Energy
,
181
, pp.
745
759
. 10.1016/j.energy.2019.05.186
2.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Muñoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031801
. 10.1115/1.4004788
3.
Fattahi
,
A.
,
Hosseinalipour
,
S. M.
,
Karimi
,
N.
,
Saboohi
,
Z.
, and
Ommi
,
F.
,
2019
, “
On the Response of the Exit Nozzle of a Lean-Premixed Hydrogen Combustor to Acoustic and Dissipative-Dispersive Entropy Waves
,”
Energy
,
180
, pp.
272
291
. 10.1016/j.energy.2019.04.202
4.
Khojasteh
,
D.
,
Mousavi
,
S. M.
,
Glamore
,
W.
, and
Iglesias
,
G.
,
2018
, “
Wave Energy Status in Asia
,”
Ocean Eng.
,
169
, pp.
344
358
. 10.1016/j.oceaneng.2018.09.034
5.
Sanusi
,
Y. S.
,
Mokheimer
,
E. M. A.
,
Shakeel
,
M. R.
,
Abubakar
,
Z.
, and
Habib
,
M. A.
,
2017
, “
Oxy-combustion of Hydrogen-Enriched Methane: Experimental Measurements and Analysis
,”
Energy Fuels
,
31
(
2
), pp.
2007
2016
. 10.1021/acs.energyfuels.6b03118
6.
Di Iorio
,
S.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
,
2016
, “
Analysis of Combustion of Methane and Hydrogen–Methane Blends in Small DI SI (Direct Injection Spark Ignition) Engine Using Advanced Diagnostics
,”
Energy
,
108
, pp.
99
107
. 10.1016/j.energy.2015.09.012
7.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
. 10.1016/j.pecs.2004.02.003
8.
Liu
,
R.
, and
An
,
E.
,
2017
, “
Turbulent Flame Characteristics of Oxycoal MILD Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062206
. 10.1115/1.4037190
9.
Özdemir
,
İB
, and
Peters
,
N.
,
2001
, “
Characteristics of the Reaction Zone in a Combustor Operating at Mild Combustion
,”
Exp. Fluids
,
30
(
6
), pp.
683
695
. 10.1007/s003480000248
10.
Wang
,
F.
,
Mi
,
J.
,
Li
,
P.
, and
Zheng
,
C.
,
2011
, “
Diffusion Flame of a CH4/H2 Jet in Hot Low-Oxygen Coflow
,”
Int. J. Hydrogen Energy
,
36
(
15
), pp.
9267
9277
. 10.1016/j.ijhydene.2011.04.180
11.
Ayoub
,
M.
,
Rottier
,
C.
,
Carpentier
,
S.
,
Villermaux
,
C.
,
Boukhalfa
,
A. M.
, and
Honoré
,
D.
,
2012
, “
An Experimental Study of MILD Flameless Combustion of Methane/Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
6912
6921
. 10.1016/j.ijhydene.2012.01.018
12.
Arteaga Mendez
,
L. D.
,
Tummers
,
M. J.
,
van Veen
,
E. H.
, and
Roekaerts
,
D. J. E. M.
,
2015
, “
Effect of Hydrogen Addition on the Structure of Natural-Gas Jet-in-Hot-Coflow Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3557
3564
. 10.1016/j.proci.2014.06.146
13.
Mardani
,
A.
, and
Tabejamaat
,
S.
,
2010
, “
Effect of Hydrogen on Hydrogen–Methane Turbulent Non-premixed Flame Under MILD Condition
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11324
11331
. 10.1016/j.ijhydene.2010.06.064
14.
Gao
,
X.
,
Duan
,
F.
,
Lim
,
S. C.
, and
Yip
,
M. S.
,
2013
, “
NOX Formation in Hydrogen–Methane Turbulent Diffusion Flame Under the Moderate or Intense Low-Oxygen Dilution Conditions
,”
Energy
,
59
, pp.
559
569
. 10.1016/j.energy.2013.07.022
15.
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2014
, “
Development of Biogas Combustion in Combined Heat and Power Generation
,”
Renew. Sustain. Energy Rev.
,
40
, pp.
868
875
. 10.1016/j.rser.2014.07.204
16.
Yan
,
Y.
,
Tang
,
W.
,
Zhang
,
L.
,
Pan
,
W.
,
Yang
,
Z.
,
Chen
,
Y.
, and
Lin
,
J.
,
2014
, “
Numerical Simulation of the Effect of Hydrogen Addition Fraction on Catalytic Micro-Combustion Characteristics of Methane-Air
,”
Int. J. Hydrogen Energy
,
39
(
4
), pp.
1864
1873
. 10.1016/j.ijhydene.2013.11.028
17.
Mousavi
,
S. M.
,
Abolfazli-Esfahani
,
J.
, and
Yazdi-Mamaghani
,
M.
,
2014
, “
Numerical Study of Entropy Generation in the Flameless Oxidation Using Large Eddy Simulation Model and OpenFOAM Software
,”
Int. J. Thermodyn.
,
17
(
4
), pp.
202
208
. 10.5541/ijot.530
18.
Mousavi
,
S. M.
, and
Abolfazli-Esfahani
,
J.
,
2014
, “
Numerical Investigation of the Flameless Oxidation of Natural Gas in the IFRF Furnace Using Large Eddy Simulation
,”
Int. J. Spray Combust. Dyn.
,
6
(
4
), pp.
387
410
. 10.1260/1756-8277.6.4.387
19.
Kamali
,
R.
,
Mousavi
,
S. M.
,
Binesh
,
A. R.
, and
Abolfazli-Esfahani
,
J.
,
2016
, “
Large Eddy Simulation of the Flameless Oxidation in the IFRF Furnace With Varying Inlet Conditions
,”
Int. J. Spray Combust. Dyn.
,
9
(
2
), pp.
102
115
. 10.1177/1756827716653850
20.
Deng
,
X.
,
Xiong
,
Y.
,
Yin
,
H.
, and
Gao
,
Q.
,
2016
, “
Numerical Study of the Effect of Nozzle Configurations on Characteristics of MILD Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042212
. 10.1115/1.4033141
21.
Li
,
P.
,
Wang
,
F.
,
Mi
,
J.
,
Dally
,
B. B.
,
Mei
,
Z.
,
Zhang
,
J.
, and
Parente
,
A.
,
2014
, “
Mechanisms of NO Formation in MILD Combustion of CH4/H2 Fuel Blends
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19187
19203
. 10.1016/j.ijhydene.2014.09.050
22.
Mardani
,
A.
, and
Fazlollahi Ghomshi
,
A.
,
2016
, “
Numerical Study of Oxy-Fuel MILD (Moderate or Intense Low-Oxygen Dilution Combustion) Combustion for CH4–H2 Fuel
,”
Energy
,
99
, pp.
136
151
. 10.1016/j.energy.2016.01.016
23.
Dai
,
C.
,
Shu
,
Z.
,
Li
,
P.
, and
Mi
,
J.
,
2018
, “
Combustion Characteristics of a Methane Jet Flame in Hot Oxidant Coflow Diluted by H2O Versus the Case by N2
,”
Energy Fuels
,
32
(
1
), pp.
875
888
. 10.1021/acs.energyfuels.7b03060
24.
Sabia
,
P.
,
Sorrentino
,
G.
,
Bozza
,
P.
,
Ceriello
,
G.
,
Ragucci
,
R.
, and
de Joannon
,
M.
,
2019
, “
Fuel and Thermal Load Flexibility of a MILD Burner
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4547
4554
. 10.1016/j.proci.2018.09.003
25.
Chinnici
,
A.
,
Tian
,
Z. F.
,
Lim
,
J. H.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2019
, “
Thermal Performance Analysis of a Syngas-Fuelled Hybrid Solar Receiver Combustor Operated in the MILD Combustion Regime
,”
Combust. Sci. Technol.
,
191
(
1
), pp.
2
17
. 10.1080/00102202.2018.1452381
26.
Chinnici
,
A.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2019
, “
An Experimental Study of the Stability and Performance Characteristics of a Hybrid Solar Receiver Combustor Operated in the MILD Combustion Regime
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5687
5695
. 10.1016/j.proci.2018.05.099
27.
Zhang
,
Z.
,
Li
,
X.
,
Zhang
,
L.
,
Luo
,
C.
,
Lu
,
B.
,
Xu
,
Y.
,
Liu
,
J.
,
Chen
,
A.
, and
Zheng
,
C.
,
2019
, “
Effect of H2O/CO2 Mixture on Heat Transfer Characteristics of Pulverized Coal MILD-Oxy Combustion
,”
Fuel Process. Technol.
,
184
, pp.
27
35
. 10.1016/j.fuproc.2018.11.011
28.
Tu
,
Y.
,
Xu
,
M.
,
Zhou
,
D.
,
Wang
,
Q.
,
Yang
,
W.
, and
Liu
,
H.
,
2019
, “
CFD and Kinetic Modelling Study of Methane MILD Combustion in O2/N2, O2/CO2 and O2/H2O Atmospheres
,”
Appl. Energy
,
240
, pp.
1003
1013
. 10.1016/j.apenergy.2019.02.046
29.
Moghadasi
,
M. H.
,
Riazi
,
R.
,
Tabejamaat
,
S.
, and
Mardani
,
A.
,
2019
, “
Effects of Preheating and CO2 Dilution on Oxy-MILD Combustion of Natural Gas
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122002
. 10.1115/1.4043823
30.
Christo
,
F. C.
, and
Dally
,
B. B.
,
2005
, “
Modeling Turbulent Reacting Jets Issuing Into a Hot and Diluted Coflow
,”
Combust. Flame
,
142
(
1
), pp.
117
129
. 10.1016/j.combustflame.2005.03.002
31.
Aminian
,
J.
,
Galletti
,
C.
,
Shahhosseini
,
S.
, and
Tognotti
,
L.
,
2012
, “
Numerical Investigation of a MILD Combustion Burner: Analysis of Mixing Field, Chemical Kinetics and Turbulence-Chemistry Interaction
,”
Flow Turbul. Combust.
,
88
(
4
), pp.
597
623
. 10.1007/s10494-012-9386-z
32.
Galletti
,
C.
,
Ferrarotti
,
M.
,
Parente
,
A.
, and
Tognotti
,
L.
,
2015
, “
Reduced NO Formation Models for CFD Simulations of MILD Combustion
,”
Int. J. Hydrogen Energy
,
40
(
14
), pp.
4884
4897
. 10.1016/j.ijhydene.2015.01.172
33.
Mardani
,
A.
,
2017
, “
Optimization of the Eddy Dissipation Concept (EDC) Model for Turbulence-Chemistry Interactions Under Hot Diluted Combustion of CH4/H2
,”
Fuel
,
191
, pp.
114
129
. 10.1016/j.fuel.2016.11.056
34.
Wang
,
H.
,
Zhou
,
H.
,
Ren
,
Z.
, and
Law
,
C. K.
,
2019
, “
Transported PDF Simulation of Turbulent CH4/H2 Flames Under MILD Conditions With Particle-Level Sensitivity Analysis
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4487
4495
. 10.1016/j.proci.2018.05.167
35.
Ferrarotti
,
M.
,
Li
,
Z.
, and
Parente
,
A.
,
2019
, “
On the Role of Mixing Models in the Simulation of MILD Combustion Using Finite-Rate Chemistry Combustion Models
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4531
4538
. 10.1016/j.proci.2018.07.043
36.
Li
,
Z.
,
Cuoci
,
A.
, and
Parente
,
A.
,
2019
, “
Large Eddy Simulation of MILD Combustion Using Finite Rate Chemistry: Effect of Combustion Sub-Grid Closure
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4519
4529
. 10.1016/j.proci.2018.09.033
37.
Christodoulou
,
L.
,
Karimi
,
N.
,
Cammarano
,
A.
,
Paul
,
M.
, and
Navarro-Martinez
,
S.
,
2020
, “
State Prediction of an Entropy Wave Advecting Through a Turbulent Channel Flow
,”
J. Fluid Mech.
,
882
, p.
A8
. 10.1017/jfm.2019.799
38.
Karimi
,
N.
,
McGrath
,
S.
,
Brown
,
P.
,
Weinkauff
,
J.
, and
Dreizler
,
A.
,
2016
, “
Generation of Adverse Pressure Gradient in the Circumferential Flashback of a Premixed Flame
,”
Flow Turbul. Combust.
,
97
(
2
), pp.
663
687
. 10.1007/s10494-015-9695-0
39.
Christodoulou
,
L.
,
Kabiraj
,
L.
,
Saurabh
,
A.
, and
Karimi
,
N.
,
2016
, “
Characterizing the Signature of Flame Flashback Precursor Through Recurrence Analysis
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
26
(
1
), p.
013110
. 10.1063/1.4940154
40.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Karimi
,
N.
,
Sailor
,
A.
,
Mastorakos
,
E.
,
Dowling
,
A. P.
, and
Paschereit
,
C. O.
,
2015
, “
Chaos in an Imperfectly Premixed Model Combustor
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
25
(
2
), p.
023101
. 10.1063/1.4906943
41.
Chui
,
E. H.
, and
Raithby
,
G. D.
,
1993
, “
Computation of Radiant Heat Transfer on a Nonorthogonal Mesh Using the Finite-Volume Method
,”
Numer. Heat Transfer B: Fundam.
,
23
(
3
), pp.
269
288
. 10.1080/10407799308914901
42.
Wang
,
L.
,
Karimi
,
N.
,
Sutardi
,
T.
, and
Paul
,
M.
,
2019
, “
Combustion Characteristics and Pollutant Emissions in Transient Oxy-Combustion of a Single Biomass Particle—A Numerical Study
,”
Energy Fuels
,
33
(
2
), pp.
1556
1569
. 10.1021/acs.energyfuels.8b03602
43.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
1999
, “
Coupled Ordinates Method for Multigrid Acceleration of Radiation Calculations
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
467
473
. 10.2514/2.6485
44.
Bilger
,
R. W.
,
Stårner
,
S. H.
, and
Kee
,
R. J.
,
1990
, “
On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
. 10.1016/0010-2180(90)90122-8
45.
Dally
,
B. B.
,
Karpetis
,
A. N.
, and
Barlow
,
R. S.
,
2002
, “
Structure of Turbulent Non-Premixed Jet Flames in a Diluted Hot Coflow
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1147
1154
. 10.1016/S1540-7489(02)80145-6
46.
Frassoldati
,
A.
,
Sharma
,
P.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2010
, “
Kinetic and Fluid Dynamics Modeling of Methane/Hydrogen Jet Flames in Diluted Coflow
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
376
383
. 10.1016/j.applthermaleng.2009.10.001
47.
Nikolaou
,
Z. M.
, and
Swaminathan
,
N.
,
2014
, “
Heat Release Rate Markers for Premixed Combustion
,”
Combust. Flame
,
161
(
12
), pp.
3073
3084
. 10.1016/j.combustflame.2014.05.019
48.
Mansourian
,
M.
,
Kamali
,
R.
, and
Jeung
,
I.-S.
,
2019
, “
Numerical Investigation of Embedding Some Hot Obstacles in a Low Speed Reacting Flow of the Moderate or Intense Low-Oxygen Dilution in a Jet-in-Hot-Coflow
,”
Acta Astronaut.
,
162
, pp.
536
545
. 10.1016/j.actaastro.2019.06.034
49.
El-Mahallawy
,
F.
, and
Habik
,
S.-D.
,
2002
, “Turbulent Premixed and Diffusion Flames,”
Fundamentals and Technology of Combustion
,
F.
El-Mahallawy
and
S. E.-D.
Habik
, eds.,
Elsevier
,
Oxford
, pp.
259
375
.
50.
Asadi
,
A.
,
Kadijani
,
O. N.
,
Doranehgard
,
M. H.
,
Bozorg
,
M. V.
,
Xiong
,
Q.
,
Shadloo
,
M. S.
, and
Li
,
L. K.
,
2020
, “
Numerical Study on the Application of Biodiesel and Bioethanol in a Multiple Injection Diesel Engine
,”
Renew. Energy
,
150
, pp.
1019
1029
. 10.1016/j.renene.2019.11.088
51.
Hong
,
Z.
,
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2010
, “
Experimental Study of the Rate of OH + HO2→H2O + O2 at High Temperatures Using the Reverse Reaction
,”
J. Phys. Chem. A
,
114
(
17
), pp.
5520
5525
. 10.1021/jp100739t
52.
Blocquet
,
M.
,
Schoemaecker
,
C.
,
Amedro
,
D.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Fittschen
,
C.
,
2013
, “
Quantification of OH and HO2 Radicals During the Low-Temperature Oxidation of Hydrocarbons by Fluorescence Assay by Gas Expansion Technique
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
50
), pp.
20014
20017
. 10.1073/pnas.1314968110
53.
Bowman
,
C.
,
Hanson
,
R.
,
Gardiner
,
W.
,
Lissianski
,
V.
,
Frenklach
,
M.
,
Goldenberg
,
M.
, and
Smith
,
G.
,
1997
, “
GRI-Mech 2. 11: An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion and NO Formation and Reburning
,” GRI Topical Report GRI-97=0020, 1997, Gas Research Institute, Chicago, IL. http://www.me.berkeley.edu=gri_mech/.
54.
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
,
Xiong
,
Q.
, and
Li
,
L. K.
,
2019
, “
A Numerical Study on Discrete Combustion of Polydisperse Magnesium Aero-Suspensions
,”
Energy
,
194
, p.
116872
. 10.1016/j.energy.2019.116872
55.
Stoecklin
,
T.
,
Halvick
,
P.
,
Yu
,
H.-G.
,
Nyman
,
G.
, and
Ellinger
,
Y.
,
2018
, “
On the Gas-Phase Formation of the HCO Radical: Accurate Quantum Study of the H + CO Radiative Association
,”
Mon. Not. R. Astron. Soc.
,
475
(
2
), pp.
2545
2552
. 10.1093/mnras/stx3348
56.
Saffarian
,
M. R.
,
Bahoosh
,
R.
, and
Doranehgard
,
M. H.
,
2019
, “
Entropy Generation in the Intake Pipe of an Internal Combustion Engine
,”
Eur. Phys. J. Plus
,
134
(
9
), p.
476
. 10.1140/epjp/i2019-12831-7
57.
Athar
,
K.
,
Doranehgard
,
M. H.
,
Eghbali
,
S.
, and
Dehghanpour
,
H.
,
2019
, “
Measuring Diffusion Coefficients of Gaseous Propane in Heavy Oil at Elevated Temperatures
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2633
2645
. 10.1007/s10973-019-08768-7
You do not currently have access to this content.