Abstract

To date, numerous studies using experimental methods or computational fluid dynamics (CFD) simulations to investigate erosion in elbows have been published. However, most of these studies focused on erosion caused by large particles flowing through a single elbow, whereas erosion due to small particles in elbows mounted in series is largely ignored. Studying erosion in elbows mounted in series is essential for improving the design of pipeline systems. In this paper, a CFD model is developed and validated against experimental data in the literature. The effects of both the connecting length (i.e., the distance between two elbows connected in series) and the elbow radius of curvature on erosion behavior were investigated using the verified model. In addition, the Dean number and Stokes number were used to investigate particle motion. The results show that erosion in the second elbow first decreases and then increases, as the connecting length increases, and the maximum erosion zone always occurs in the first elbow. However, when the number of elbows is increased to four, interestingly, the maximum erosion zone is located in the fourth elbow. The findings are valuable and provide guidance for designing novel pipeline systems that can mitigate erosion.

References

1.
Jordan
,
K.
,
1998
, “
Erosion in Multiphase Production of Oil and Gas
,”
Corrosion 98, NACE International Annual Conference
,
San Antonio, TX
, Paper No. 58.
2.
McLaury
,
B. S.
,
Shirazi
,
S. A.
,
Viswanathan
,
V.
,
Mazumder
,
Q. H.
, and
Santos
,
G.
,
2011
, “
Distribution of Sand Particles in Horizontal and Vertical Annular Multiphase Flow in Pipes and the Effects on Sand Erosion
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
023001
. 10.1115/1.4004264
3.
Salama
,
M.
, and
Venkatesh
,
E.
,
1983
, “
Evaluation of Erosional Velocity Limitations in Offshore Gas Wells
,”
Proceedings of 15th Offshore Technology Conference
,
Houston
, Paper No. OTC-4485.
4.
Weiner
,
P.
, and
Tolle
,
G.
,
1976
,
Detection and Prevention of Sand Erosion of Production Equipment
,
API OSAPER Project No. 2, American Petroleum Institute, Texas A&M Research Foundation
,
Texas A&M University
.
5.
Svedeman
,
S.
, and
Arnold
,
K.
,
1993
, “
Criteria for Sizing Multiphase Flow Lines for Erosive/Corrosive Service
,”
Proceedings of 68th SPE Annual Fall Technical Conference
,
Houston
, Paper No. SPE-26569.
6.
Bourgoyne
,
A.
,
1989
, “
Experimental Study of Erosion in Diverter Systems Due to Sand Production
,”
Proceedings of SPE/IADC Drilling Conference
,
LA
, Paper No. SPE/ IADC-18716.
7.
Shirazi
,
S. A.
,
McLaury
,
B. S.
,
Shadley
,
J. R.
, and
Rybicki
,
E. F.
,
1995
, “
A Procedure to Predict Solid Particle Erosion in Elbows and Tees
,”
ASME J. Pressure Vessel Technol.
,
117
(
1
), pp.
45
52
. 10.1115/1.2842089
8.
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2000
, “
An Alternate Method to API RP 14E for Predicting Solids Erosion in Multiphase Flow
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
115
122
. 10.1115/1.1288209
9.
Mazumder
,
Q. H.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2004
, “
A Mechanistic Model to Predict Sand Erosion in Multiphase Flow in Elbows Downstream of Vertical Pipes
,”
Corrosion
, pp.
1
15
.
10.
Oka
,
Y. I.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 2: Mechanical Properties of Materials Directly Associated With Erosion Damage
,”
Wear
,
259
(
1–6
), pp.
102
109
. 10.1016/j.wear.2005.01.040
11.
Jajja
,
S. A.
,
Ali
,
W.
,
Ali
,
H. M.
, and
Ali
,
A. M.
,
2014
, “
Water Cooled Minichannel Heat Sinks for Microprocessor Cooling: Effect of Fin Spacing
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
76
82
. 10.1016/j.applthermaleng.2013.12.007
12.
Ali
,
H. M.
,
Ali
,
H.
, and
Liaquat
,
H.
,
2015
, “
Hafiz Talha Bin Maqsood, Malik Ahmed Nadir, Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Using ZnO-Water Nanofluids
,”
Energy
,
84
, pp.
317
324
. 10.1016/j.energy.2015.02.103
13.
Ali
,
H. M.
, and
Arshad
,
W.
,
2015
, “
Thermal Performance Investigation of Staggered and Inline Pin Fin Heat Sinks Using Water Based Rutile and Anatase TiO2 Nanofluids
,”
Energy Convers. Manage.
,
106
, pp.
793
803
. 10.1016/j.enconman.2015.10.015
14.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
184
. 10.1016/S0043-1648(97)00217-2
15.
Edwards
,
J. K.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2001
, “
Modeling Solid Particle Erosion in Elbows and Plugged Tees
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
277
284
. 10.1115/1.1413773
16.
Wang
,
J.
,
Shirazi
,
S.
,
Shadley
,
J.
, and
Rybicki
,
E.
,
1996
, “
Application of Flow Modeling and Particle Tracking to Predict Sand Erosion Rates in Elbows
,”
ASME FEDSM
,
236
, pp.
725
734
.
17.
Zhang
,
J.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
CFD Simulation and 2D Modeling of Solid Particle Erosion in Annular Flow
,”
10th North American Conference on Multiphase Technology
,
Banff, Canada
,
June 8–10
.
18.
Zhu
,
H.
,
Zhu
,
J.
,
Rutter
,
R.
, and
Zhang
,
H.
,
2019
, “
A Numerical Study on Erosion Model Selection and Effect of Pump Type and Sand Characters in Electrical Submersible Pumps (ESPs) by Sandy Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122004
. 10.1115/1.4044941
19.
Zhu
,
H.
,
Zhu
,
J.
,
Rutter
,
R.
, and
Zhang
,
H.
,
2019
, “
A Numerical Study on Turbulence Model and Rebound Model Effect of Erosion Simulations in an Electrical Submersible Pump (ESP)
,”
Proceeding of ASME-JSME-KSME Joint Fluids Engineering Conference 2019
,
San Francisco, CA
,
July 28–Aug. 1, 2019
,
ASME
Paper No. AJKFLUIDS2019-5538
. 10.1115/ajkfluids2019-5538
20.
Zhu
,
H.
,
Zhu
,
J.
,
Rutter
,
R.
,
Zhang
,
J.
, and
Zhang
,
H.-Q.
,
2018
, “
Sand Erosion Model Prediction, Selection and Comparison for Electrical Submersible Pump (ESP) Using CFD Method
,”
Proceeding of the 5th Joint US-European Fluids Engineering Division Summer Meeting
,
Montreal, Quebec, Canada
,
July 15–20, 2018
, p.
V003T17A003
,
ASME
Paper No. FEDSM2018-83179
. 10.1115/fedsm2018-83179
21.
Chen
,
X.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2006
, “
Numerical and Experimental Investigation of the Relative Erosion Severity Between Plugged Tees and Elbows in Dilute Gas/Solid Two-Phase Flow
,”
Wear
,
259
(
1–6
), pp.
102
109
. 10.1016/j.wear.2006.01.022
22.
Pereira
,
G. C.
,
de Souza
,
F. J.
, and
de Moro Martins
,
D. A.
,
2014
, “
Numerical Prediction of Erosion Due to Particles in Elbows
,”
Powder Technol.
,
261
, pp.
105
117
. 10.1016/j.powtec.2014.04.033
23.
Peng
,
W.
, and
Cao
,
X.
,
2016
, “
Numerical Simulation of Solid Particle Erosion in Pipe Bends for Liquid-Solid Flow
,”
Powder Technol.
,
294
, pp.
266
279
. 10.1016/j.powtec.2016.02.030
24.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), p.
482e490
. 10.2514/3.62687
25.
Zhang
,
J.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2018
, “
Application and Experimental Validation of a CFD Based Erosion Prediction Procedure for Jet Impingement Geometry
,”
Wear
,
394
, pp.
11
19
. 10.1016/j.wear.2017.10.001
26.
Parsi
,
M.
,
Mahdavimanesh
,
M.
,
Noghrehabadi
,
A. R.
, and
Ahmadi
,
G.
,
2013
, “
Particle Deposition in a Turbulent Channel Flow
,”
ASME 2013 Fluids Engineering Division Summer Meeting
,
Reno, NV
,
July 7–11
.
27.
Kumar
,
P. G.
, and
Simith
,
B. R. J.
,
2014
, “
Sand Fines Erosion in Gas Pipelines—Experiments and CFD Modeling
,”
Corrosion
,
1
, pp.
9
13
.
28.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Valves
,”
Wear
,
216
(
2
), pp.
184
193
. 10.1016/S0043-1648(97)00217-2
29.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
. 10.1016/j.wear.2006.12.048
30.
Kliafas
,
Y.
, and
Holt
,
M.
,
1987
, “
LDV Measurements of a Turbulent Air-Solid Two-Phase Flow in a 90 deg Bend
,”
Exp. Fluids
,
1
(
5
), pp.
73
85
. 10.1007/BF00776177
31.
Dean
,
W. R.
,
1928
, “
Fluid Motion in a Curved Channel
,”
Proc. R. Soc. Lond. A
,
121
(
787
), pp.
402
420
.
32.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
, Reprint. ed.,
Cambridge University Press
,
Cambridge
. ISBN 9780521848046.
33.
Chen
,
X.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2004
, “
Application and Experimental Validation of a Computational Fluid Dynamics (CFD)-Based Erosion Prediction Model in Elbows and Plugged Tees [J]
,”
Comput. Fluids
,
33
(
10
), pp.
1251
1272
. 10.1016/j.compfluid.2004.02.003
34.
Solnordal
,
C. B.
,
Wong
,
C. Y.
, and
Boulanger
,
J.
,
2015
, “
An Experimental and Numerical Analysis of Erosion Caused by Sand Pneumatically Conveyed Through a Standard Pipe Elbow
,”
Wear
,
336
, pp.
43
57
. 10.1016/j.wear.2015.04.017
You do not currently have access to this content.