Abstract

Although the problems of wax deposition in multiphase transportation pipelines have been addressed and wax deposition models have been developed in recent years, the complex wax deposition paths derived from the potential variety of flow regimes in multiphase flow have not been well understood. This study presented a method for characterizing wax crystals aggregation and developed a model for describing the wax deposition path in oil−water two-phase flows. The effect of the emulsified water droplets on wax crystals aggregation in shearing flows was identified using the polarized light microscopy and image analysis method. The role of the emulsified water droplets in the wax deposition path reaching the upper side and lower side of the pipeline wall was discussed by solving the developed model which involves the possible inclination angle of the multiphase transportation pipeline. The availability of the mechanistic model was validated by the data and knowledge in the existing literature. The results indicated that the circular degree and particle size of wax crystals showed a characteristic that it first increased and then decreased with the accumulation of emulsified water droplets in shearing flow, and this transition appeared to the phase inversion point of the oil−water two-phase. The wax deposition path was complex in multiphase transportation. The velocity for wax crystals depositing to the pipeline wall decreased, and the time for wax crystals depositing to the pipeline wall extended with the existence of emulsified water droplets. This behavior became remarkable when the dispersion stability of the oil−water two-phase enhanced.

References

1.
Maria
,
C. G.
,
2001
, “
Paraffin Deposition in Oil Production
,”
Presented at the SPE International Symposium on Oilfield Chemistry
,
Houston, TX
,
Feb. 13–16
, Paper No. SPE-64992-MS.
2.
Gong
,
J.
,
Zhang
,
Y.
,
Liao
,
L.
,
Duan
,
J.
,
Wang
,
P.
, and
Zhou
,
J.
,
2011
, “
Wax Deposition in the Oil/Gas Two-Phase Flow for a Horizontal Pipe
,”
Energy Fuels
,
25
(
4
), pp.
1624
1632
. 10.1021/ef101682u
3.
Song
,
G.
,
Li
,
Y.
,
Wang
,
W.
,
Jiang
,
K.
,
Shi
,
Z.
, and
Yao
,
S.
,
2018
, “
Investigation on the Mechanical Properties and Mechanical Stabilities of Pipewall Hydrate Deposition by Modelling and Numerical Simulation
,”
Chem. Eng. Sci.
,
192
, pp.
477
487
. 10.1016/j.ces.2018.07.055
4.
Zheng
,
S.
,
Zhang
,
F.
,
Huang
,
Z.
, and
Fogler
,
H. S.
,
2013
, “
Effects of Operating Conditions on Wax Deposit Carbon Number Distribution: Theory and Experiment
,”
Energy Fuels
,
27
(
12
), pp.
7379
7388
. 10.1021/ef402051n
5.
Wang
,
Z.
,
Li
,
J.
,
Zhang
,
H.-Q.
, and
Li
,
W.
,
2017
, “
Treatment on Oil/Water Gel Deposition Behavior in Non-Heating Gathering and Transporting Process With Polymer Flooding Wells
,”
Environ. Earth. Sci.
,
76
(
8
), p.
326
. 10.1007/s12665-017-6646-1
6.
Zhu
,
J.
,
Zhu
,
H.
,
Zhang
,
J.
, and
Zhang
,
H.-Q.
,
2018
, “
A Numerical Study on Flow Patterns Inside an Electrical Submersible Pump (ESP) and Comparison With Visualization Experiments
,”
J. Petrol. Sci. Eng.
,
173
, pp.
339
350
. 10.1016/j.petrol.2018.10.038
7.
Rui
,
Z.
,
Peng
,
F.
,
Chang
,
H.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
12
20
. 10.1016/j.jngse.2016.11.049
8.
Singh
,
P.
,
Venkatesan
,
R.
,
Fogler
,
H. S.
, and
Nagarajan
,
N.
,
2000
, “
Formation and Aging of Incipient Thin Film Wax−Oil Gels
,”
AICHE J.
,
46
(
5
), pp.
1059
1074
. 10.1002/aic.690460517
9.
Aiyejina
,
A.
,
Chakrabarti
,
D. P.
,
Pilgrim
,
A.
, and
Sastry
,
M. K. S.
,
2011
, “
Wax Formation in Oil Pipelines: A Critical Review
,”
Int. J. Multiphas. Flow
,
37
(
7
), pp.
671
694
. 10.1016/j.ijmultiphaseflow.2011.02.007
10.
White
,
M.
,
Pierce
,
K.
, and
Acharya
,
T.
,
2018
, “
A Review of Wax-Formation/Mitigation Technologies in the Petroleum Industry
,”
SPE Prod. Oper.
,
33
(
3
), pp.
476
485
. 10.2118/189447-pa
11.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
,
39
, pp.
44
53
. 10.1016/j.jngse.2017.01.022
12.
Burger
,
E. D.
,
Perkins
,
T. K.
, and
Striegler
,
J. H.
,
1981
, “
Studies of Wax Deposition in the Trans Alaska Pipeline
,”
Petrol. Sci. Technol.
,
33
(
6
), pp.
1075
1086
. 10.2118/8788-PA
13.
Weingarten
,
J. S.
, and
Euchner
,
J. A.
,
1988
, “
Methods for Predicting Wax Precipitation and Deposition
,”
SPE Prod. Oper.
,
3
(
1
), pp.
121
126
. 10.2118/15654-pa
14.
Hamouda
,
A. A.
, and
Davidsen
,
S.
,
1995
, “
An Approach for Simulation of Paraffin Deposition in Pipelines as a Function of Flow Characteristics With Reference to Tesside Oil Pipeline
,”
Presented at the SPE International Symposium on Oilfield Chemistry
,
San Antonio, TX
,
Feb. 14–17
, Paper No. SPE-28966-MS.
15.
Azevedo
,
L. F. A.
, and
Teixeira
,
A. M.
,
2003
, “
A Critical Review of the Modeling of Wax Deposition Mechanisms
,”
Petrol. Sci. Technol.
,
21
(
3−4
), pp.
393
408
. 10.1081/LFT-120018528
16.
Zhu
,
J.
,
Zhu
,
H.
,
Wang
,
Z.
,
Zhang
,
J.
,
Cuamatzi-Melendez
,
R.
,
Farfan
,
J. A. M.
, and
Zhang
,
H.-Q.
,
2018
, “
Surfactant Effect on Air/Water Flow in a Multistage Electrical Submersible Pump (ESP)
,”
Exp. Therm. Fluid. Sci.
,
98
, pp.
95
111
. 10.1016/j.expthermflusci.2018.05.013
17.
Wang
,
Z.
,
Liu
,
Y.
,
Li
,
J.
,
Zhuge
,
X.
, and
Zhang
,
L.
,
2016
, “
Study on Two-Phase Oil−Water Gelling Deposition Behavior in Low-Temperature Transportation
,”
Energy Fuels
,
30
(
6
), pp.
4570
4582
. 10.1021/acs.energyfuels.6b00294
18.
Hsu
,
J. J. C.
,
Santamaria
,
M. M.
, and
Brubaker
,
J. P.
,
1994
, “
Wax Deposition of Waxy Live Crudes Under Turbulent Flow Conditions
,”
Presented at Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 25–28
, Paper No. SPE-28480-MS.
19.
Couto
,
G. H.
,
Chen
,
H.
,
Dellecase
,
E.
,
Sarica
,
C.
, and
Volk
,
M.
,
2008
, “
An Investigation of Two-Phase Oil/Water Paraffin Deposition
,”
SPE Prod. Oper.
,
23
(
1
), pp.
49
55
. 10.4043/17963-ms
20.
Bruno
,
A.
,
Sarica
,
C.
,
Chen
,
H.
, and
Volk
,
M.
,
2008
, “
Paraffin Deposition During the Flow of Water-in-Oil and Oil-in-Water Dispersions in Pipes
,”
Presented at Annual Technical Conference and Exhibition
,
Denver, CO
,
Sept. 21–24
, Paper No. SPE-114747-MS.
21.
Huang
,
Z.
,
Senra
,
M.
,
Kapoor
,
R.
, and
Fogler
,
H. S.
,
2011
, “
Wax Deposition Modeling of Oil/Water Stratified Channel Flow
,”
AIChE J.
,
57
(
4
), pp.
841
851
. 10.1002/aic.12307
22.
Hoffmann
,
R.
,
Amundsen
,
L.
,
Huang
,
Z.
,
Zheng
,
S.
, and
Fogler
,
H. S.
,
2012
, “
Wax Deposition in Stratified Oil/Water Flow
,”
Energy Fuels
,
26
(
6
), pp.
3416
3423
. 10.1021/ef2018989
23.
Zheng
,
S.
, and
Fogler
,
H. S.
,
2015
, “
Fundamental Investigation of Wax Diffusion Characteristics in Water-in-Oil Emulsion
,”
Ind. Eng. Chem. Res.
,
54
(
16
), pp.
4420
4428
. 10.1021/ie501955e
24.
Wang
,
Z.
,
Bai
,
Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2019
, “
Investigation on Gelation Nucleation Kinetics of Waxy Crude Oil Emulsions by Their Thermal Behavior
,”
J. Petrol. Sci. Eng.
,
181
(
99
), p.
106230
. 10.1016/j.petrol.2019.106230
25.
Bai
,
C.
, and
Zhang
,
J.
,
2013
, “
Thermal, Macroscopic, and Microscopic Characteristics of Wax Deposits in Field Pipelines
,
Energy Fuels
,
27
(
2
), pp.
752
759
. 10.1021/ef3017877
26.
Fu
,
C.
,
Sun
,
Z.
,
Han
,
L.
, and
Liu
,
C.
,
2020
, “
Dual-Bandwidth Linear Polarization Converter Based on Anisotropic Metasurface
,”
IEEE Photonics J.
,
12
(
2
), p.
4600511
. 10.1109/jphot.2019.2962336
27.
Elfwing
,
A.
,
LeMarc
,
Y.
,
Baranyi
,
J.
, and
Ballagi
,
A.
,
2004
, “
Observing Growth and Division of Large Numbers of Individual Bacteria by Image Analysis
,”
Appl. Environ. Microb.
,
70
(
2
), pp.
675
678
. 10.1128/AEM.70.2.675-678.2004
28.
Liu
,
Y.
,
Chen
,
S.
,
Guan
,
B.
, and
Xu
,
P.
, “
Layout Optimization of Large-Scale Oil-Gas Gathering System Based on Combined Optimization Strategy
,”
Neurocomputing
,
332
, pp.
159
183
. 10.1016/j.neucom.2018.12.021
29.
Ni
,
G.
,
Wang
,
Z.
,
Yang
,
H.
,
Li
,
J.
,
Zhao
,
X.
, and
Liu
,
Y.
,
2019
, “
Characterisation of Paraffin Crystals Aggregation Behaviour in Shearing Fields Using Fractal Dimensional Analysis
,”
Presented at the SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition
,
Bali, Indonesia
,
Oct. 29–31
, Paper No. SPE-196444-MS.
30.
Pechook
,
S.
,
Katsman
,
A.
, and
Pokroy
,
B.
,
2016
, “
Paraffin Wax Crystal Coarsening: Effects of Strain and Wax Crystal Shape
,”
Cryst. Growth Des.
,
16
(
7
), pp.
3932
3939
. 10.1021/acs.cgd.6b00499
31.
Wang
,
Z.
,
Lin
,
X.
,
Yu
,
T.
,
Zhou
,
N.
,
Zhong
,
H.
, and
Zhu
,
J.
,
2019
, “
Formation and Rupture Mechanisms of Visco-Elastic Interfacial Films in Polymer-Stabilized Emulsions
,”
J. Disper. Sci. Technol.
,
40
(
4
), pp.
612
626
. 10.1080/01932691.2018.1478303
32.
Wang
,
W.
,
Huang
,
Q.
,
Zheng
,
H.
,
Li
,
S.
,
Long
,
Z.
, and
Wang
,
Q.
,
2018
, “
Investigation of Wax Deposition and Effective Diffusion Coefficient in Water-in-Oil Emulsion System
,”
J. Therm. Anal. Calorim.
,
134
(
2
), pp.
1031
1043
. 10.1007/s10973-018-7385-6
You do not currently have access to this content.