Abstract

Stringent emission legislations, increasing environmental and health issues, have driven extensive research on combustion engines to control pollutants. Modeling of emissions offers a cost-saving alternative to experimental analysis for combustion chamber design and optimization. Soot modeling in diesel engines has evolved over four decades from simple empirical relations to detailed kinetics involving polycyclic aromatic hydrocarbons (PAHs) and complex particle dynamics. Although numerical models have been established for predicting soot mass for parametric variations, there is a lack of modeling studies for predicting soot particle size distribution for parametric variations. This becomes important considering the inclusion of limits on soot particle count in recent emission norms. The current work aims at modeling the soot particle size distribution inside a heavy-duty diesel engine and validating the results for a parametric variation in injection pressure and intake temperature. Closed cycle combustion simulations have been performed using converge, a 3D computational fluid dynamics (CFD) code. A sectional soot model coupled with gas-phase kinetics has been used with source terms for inception, condensation, surface reactions, and coagulation. Numerical predictions for soot mass and particle size distribution at the exhaust show good agreement with experimental data after increasing the transition regime collision frequency by a factor of 100.

References

1.
Duvvuri
,
P. P.
,
Shrivastava
,
R. K.
, and
Sreedhara
,
S.
,
2019
, “Numerical Modelling of Soot in Diesel Engines,”
Engine Exhaust Particulates
,
A. K.
Agarwal
,
A.
Dhar
,
N.
Sharma
, and
P. C.
Shukla
, eds.,
Springer Singapore
,
Singapore
, pp.
71
119
.
2.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines
,” SAE Paper No. 760129. 10.4271/760129
3.
Kong
,
S.-C.
,
Sun
,
Y.
, and
Rietz
,
R. D.
,
2007
, “
Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
245
251
. 10.1115/1.2181596
4.
Tree
,
D. R.
, and
Svensson
,
K. I.
,
2007
, “
Soot Processes in Compression Ignition Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
272
309
. 10.1016/j.pecs.2006.03.002
5.
Frenklach
,
M.
, and
Wang
,
H.
,
1991
, “
Detailed Modeling of Soot Particle Nucleation and Growth
,”
Symp. Combust.
,
23
(
1
), pp.
1559
1566
. 10.1016/S0082-0784(06)80426-1
6.
Smoluchowski
,
M. V.
,
1917
, “
Versuch Einer Mathematischen Theorie Der Koagulationskinetik KolloiderLösnngen
,”
Kolloid-Z.
,
21
(
3
), pp.
98
104
. 10.1007/BF01427232
7.
Boulanger
,
J.
,
Liu
,
F.
,
Neill
,
W. S.
, and
Smallwood
,
G. J.
,
2007
, “
An Improved Soot Formation Model for 3D Diesel Engine Simulations
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), p.
877
. 10.1115/1.2718234
8.
Vishwanathan
,
G.
, and
Reitz
,
R. D.
,
2015
, “
Application of a Semi-Detailed Soot Modeling Approach for Conventional and Low Temperature Diesel Combustion—Part I: Model Performance
,”
Fuel
,
139
, pp.
757
770
. 10.1016/j.fuel.2014.08.026
9.
Karlsson
,
A.
,
Magnusson
,
I.
,
Balthasar
,
M.
, and
Mauss
,
F.
,
1998
, “
Simulation of Soot Formation under Diesel Engine Conditions Using a Detailed Kinetic Soot Model
,” SAE Paper No. 981022. 10.4271/981022
10.
Salavati-Zadeh
,
A.
,
Esfahanian
,
V.
, and
Afshari
,
A.
,
2013
, “
Detailed Kinetic Modeling of Soot-Particle and Key-Precursor Formation in Laminar Premixed and Counterflow Diffusion Flames of Fossil Fuel Surrogates
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
031101
. 10.1115/1.4023302
11.
Fraioli
,
V.
,
Beatrice
,
C.
, and
Lazzaro
,
M.
,
2011
, “
Soot Particle Size Modelling in 3D Simulations of Diesel Engine Combustion
,”
Combust. Theory Model.
,
15
(
6
), pp.
863
892
. 10.1080/13647830.2011.578662
12.
Aubagnac-Karkar
,
D.
,
Michel
,
J. B.
,
Colin
,
O.
,
Vervisch-Kljakic
,
P. E.
, and
Darabiha
,
N.
,
2015
, “
Sectional Soot Model Coupled to Tabulated Chemistry for Diesel RANS Simulations
,”
Combust. Flame
,
162
(
8
), pp.
3081
3099
. 10.1016/j.combustflame.2015.03.005
13.
Shen
,
M.
,
2016
, “
Particulate Matter Emissions From Partially Premixed Combustion With Diesel, Gasoline and Ethanol
,” Ph.D. dissertation,
Lund University
,
Lund
.
14.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2016
,
CONVERGE (v2.3)
,
Convergent Science Inc.
,
Madison, WI
.
15.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2012
, “
Grid-Convergent Spray Models for Internal Combustion Engine CFD Simulations
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012204
. 10.1115/1.4024861
16.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Anders
,
J. W.
,
Weber
,
M. R.
,
Gehrke
,
C. R.
,
Polonowski
,
C. J.
, and
Mueller
,
C. J.
,
2014
, “
Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111505
. 10.1115/1.4027653
17.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,” SAE Paper No. 980131, p. 1998–02–01.
18.
Zeuch
,
T.
,
Moréac
,
G.
,
Ahmed
,
S. S.
, and
Mauss
,
F.
,
2008
, “
A Comprehensive Skeletal Mechanism for the Oxidation of N-Heptane Generated by Chemistry-Guided Reduction
,”
Combust. Flame
,
155
(
4
), pp.
651
674
. 10.1016/j.combustflame.2008.05.007
19.
Mauss
,
F.
,
Trilken
,
B.
,
Breitbach
,
H.
, and
Peters
,
N.
,
1994
, “Soot Formation in Partially Premixed Diffusion Flames at Atmospheric Pressure,”
Soot Formation in Combustion, Mechanisms and Models
,
H.
Bockhorn
, ed.,
Springer-Verlag
,
New York
, pp.
325
349
.
20.
Marchal
,
C.
,
2008
, “
Modelisation de La Formation et de L’oxydation Des Suies Dans Un Moteur Automobile
,” Ph.D. dissertation,
Universite d’Orleans
,
France
.
21.
Vervisch Kljakic
,
P.
,
2012
, “
Modélisation Des Oxydes D’Azote et Des Suies Dans Les Moteurs Diesel
,” Ph.D. dissertation,
IFP Energies Nouvelles/CNRS
,
France
.
22.
Friedlander
,
S. K.
,
1977
,
Smoke, Dust and Haze: Fundamentals of Aerosol Behavior
,
John Wiley & Sons
,
New York
.
23.
Kazakov
,
A.
, and
Frenklach
,
M.
,
1998
, “
Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames
,”
Combust. Flame
,
114
(
3–4
), pp.
484
501
. 10.1016/S0010-2180(97)00322-2
24.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102201
. 10.1115/1.4039745
You do not currently have access to this content.