Abstract

The pyrolysis processes of a coal particle containing 19,638 atoms in different atmospheres are studied with a reactive force field molecular dynamics (ReaxFF MD) method. The detailed chemical reactions with the corresponding occurrence frequencies are obtained. The generation paths of the main products are disclosed, including CO, H2, H2O, and CH4. The nonuniform effect of temperature on the pyrolysis production is analyzed, among which the productions of CH4 and CO nonmonotonically vary with temperature, while the H2 production increases linearly with temperature. The kinds of atmospheres can significantly influence the coal pyrolysis. Hydrogen atmosphere can apparently improve the CH4 production, which results from the enhancement of the C–H bond generation.

References

1.
Li
,
Q.
,
Wang
,
Z. H.
,
Lin
,
Z. M.
,
He
,
Y.
,
Zhang
,
K.
,
Kumar
,
S.
, and
Cen
,
K. F.
,
2018
, “
Effects of Hydrothermal Modification on Sulfur Release of Low-Quality Coals During Thermal Transformation Process
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072201
.
2.
Zhang
,
Z.
,
Zhu
,
M.
,
Li
,
J.
,
Zhang
,
K.
,
Shen
,
G.
,
Xu
,
G.
,
Li
,
X.
, and
Zhang
,
D.
,
2019
, “
Effect of Heat Treatment on the Combustion Characteristics of a Lignite
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070705
. 10.1115/1.4042823
3.
Wang
,
D. D.
,
Li
,
S.
,
Gao
,
L.
,
Wu
,
H. D.
, and
Jin
,
H. G.
,
2018
, “
Novel Coal-Steam Gasification With a Thermochemical Regenerative Process for Power Generation
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092203
.
4.
Sun
,
L. L.
,
Zhang
,
Y. B.
,
Wang
,
Y.
, and
Liu
,
Q. Q.
,
2019
, “
Study on the Reoxidation Characteristics of Soaked and Air-Dried Coal
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022203
.
5.
Sathe
,
C.
,
Pang
,
Y. Y.
, and
Li
,
C. Z.
,
1999
, “
Effects of Heating Rate and Ion-Exchangeable Cations on the Pyrolysis Yields From a Victorian Brown Coal
,”
Energy Fuel
,
13
(
3
), pp.
748
755
. 10.1021/ef980240o
6.
Chen
,
L.
,
Dupont
,
C.
,
Salvador
,
S.
,
Grateau
,
M.
,
Boissonnet
,
G.
, and
Schweich
,
D.
,
2013
, “
Experimental Study on Fast Pyrolysis of Free-Falling Millimetric Biomass Particles Between 800 Degrees C and 1000 Degrees C
,”
Fuel
,
106
, pp.
61
66
. 10.1016/j.fuel.2012.11.058
7.
Pielsticker
,
S.
,
Govert
,
B.
,
Kreitzberg
,
T.
,
Habermehl
,
M.
,
Hatzfeld
,
O.
, and
Kneer
,
R.
,
2017
, “
Simultaneous Investigation Into the Yields of 22 Pyrolysis Gases From Coal and Biomass in a Small-Scale Fluidized Bed Reactor
,”
Fuel
,
190
, pp.
420
434
. 10.1016/j.fuel.2016.10.085
8.
Suuberg
,
E. M.
,
Peters
,
W. A.
, and
Howard
,
J. B.
,
1978
, “
Product Composition and Kinetics of Lignite Pyrolysis
,”
Ind. Eng. Chem. Proc. Des. Dev.
,
17
(
1
), pp.
37
46
. 10.1021/i260065a008
9.
Solomon
,
P. R.
,
Serio
,
M. A.
, and
Suuberg
,
E. M.
,
1992
, “
Coal Pyrolysis—Experiments, Kinetic Rates and Mechanisms
,”
Prog. Energy Combust.
,
18
(
2
), pp.
133
220
. 10.1016/0360-1285(92)90021-R
10.
Guell
,
A. J.
, and
Kandiyoti
,
R.
,
1993
, “
Development of a Gas-Sweep Facility for the Direct Capture of Pyrolysis Tars in a Variable Heating Rate High-Pressure Wire-Mesh Reactor
,”
Energy Fuel.
,
7
(
6
), pp.
943
952
. 10.1021/ef00042a035
11.
Matsuoka
,
K.
,
Ma
,
Z. X.
,
Akiho
,
H.
,
Zhang
,
Z. G.
,
Tomita
,
A.
,
Fletcher
,
T. H.
,
Wojtowicz
,
M. A.
, and
Niksa
,
S.
,
2003
, “
High-Pressure Coal Pyrolysis in a Drop Tube Furnace
,”
Energy Fuel
,
17
(
4
), pp.
984
990
. 10.1021/ef020298+
12.
Unger
,
P. E.
, and
Suuberg
,
E. M.
,
1984
, “
Molecular-Weight Distributions of Tars Produced by Flash Pyrolysis of Coals
,”
Fuel
,
63
(
5
), pp.
606
611
. 10.1016/0016-2361(84)90154-6
13.
Anthony
,
D. B.
,
Howard
,
J. B.
,
Hottel
,
H. C.
, and
Meissner
,
H. P.
,
1976
, “
Rapid Devolatilization and Hydrogasification of Bituminous Coal
,”
Fuel
,
55
(
2
), pp.
121
128
. 10.1016/0016-2361(76)90008-9
14.
Johnson
,
J. L.
,
1974
, “
Kinetics of Bituminous Coal Char Gasification With Gases Containing Steam and Hydrogen
,”
Adv. Chem. Ser.
,
131
(
131
), pp.
145
178
. 10.1021/ba-1974-0131.ch010
15.
Anthony
,
D. B.
, and
Howard
,
J. B.
,
1976
, “
Coal Devolatilization and Hydrogasification
,”
AIChE J.
,
22
(
4
), pp.
625
656
. 10.1002/aic.690220403
16.
Suuberg
,
E. M.
,
Peters
,
W. A.
, and
Howard
,
J. B.
,
1980
, “
Product Compositions in Rapid Hydropyrolysis of Coal
,”
Fuel
,
59
(
6
), pp.
405
412
. 10.1016/0016-2361(80)90193-3
17.
Cor
,
J.
,
Manton
,
N.
,
Mul
,
G.
,
Eckstrom
,
D.
,
Olson
,
W.
,
Malhotra
,
R.
, and
Niksa
,
S.
,
2000
, “
An Experimental Facility for the Study of Coal Pyrolysis at 10 Atmospheres
,”
Energy Fuel
,
14
(
3
), pp.
692
700
. 10.1021/ef9902348
18.
Xu
,
W. C.
,
Matsuoka
,
K.
,
Akiho
,
H.
,
Kumagai
,
M.
, and
Tomita
,
A.
,
2003
, “
High Pressure Hydropyrolysis of Coals by Using a Continuous Free-Fall Reactor
,”
Fuel
,
82
(
6
), pp.
677
685
. 10.1016/S0016-2361(02)00340-X
19.
Fushimi
,
C.
,
Goto
,
M.
,
Tsutsumi
,
A.
,
Hayashi
,
J.
, and
Chiba
,
T.
,
2003
, “
Steam Gasification Characteristics of Coal With Rapid Heating
,”
J. Anal. Appl. Pyrol.
,
70
(
2
), pp.
185
197
. 10.1016/S0165-2370(02)00131-6
20.
Chenoweth
,
K.
,
Cheung
,
S.
,
van Duin
,
A. C. T.
,
Goddard
,
W. A.
, and
Kober
,
E. M.
,
2005
, “
Simulations on the Thermal Decomposition of a Poly(Dimethylsiloxane) Polymer Using the ReaxFF Reactive Force Field
,”
J. Am. Chem. Soc.
,
127
(
19
), pp.
7192
7202
. 10.1021/ja050980t
21.
Chenoweth
,
K.
,
van Duin
,
A. C. T.
, and
Goddard
,
W. A.
,
2008
, “
ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
,”
J. Phys. Chem. A
,
112
(
5
), pp.
1040
1053
. 10.1021/jp709896w
22.
Agrawalla
,
S.
, and
van Duin
,
A. C. T.
,
2011
, “
Development and Application of a ReaxFF Reactive Force Field for Hydrogen Combustion
,”
J. Phys. Chem. A
,
115
(
6
), pp.
960
972
. 10.1021/jp108325e
23.
Liu
,
L. C.
,
Bai
,
C.
,
Sun
,
H.
, and
Goddard
,
W. A.
,
2011
, “
Mechanism and Kinetics for the Initial Steps of Pyrolysis and Combustion of 1,6-Dicyclopropane-2,4-Hexyne From ReaxFF Reactive Dynamics
,”
J. Phys. Chem. A
,
115
(
19
), pp.
4941
4950
. 10.1021/jp110435p
24.
Zhang
,
J. L.
,
Weng
,
X. X.
,
Han
,
Y.
,
Li
,
W.
,
Cheng
,
J. Y.
,
Gan
,
Z. X.
, and
Gu
,
J. J.
,
2013
, “
The Effect of Supercritical Water on Coal Pyrolysis and Hydrogen Production: A Combined ReaxFF and DFT Study
,”
Fuel
,
108
, pp.
682
690
. 10.1016/j.fuel.2013.01.064
25.
Jin
,
H.
,
Chen
,
B.
,
Zhao
,
X.
, and
Cao
,
C. Q.
,
2018
, “
Molecular Dynamic Simulation of Hydrogen Production by Catalytic Gasification of Key Intermediates of Biomass in Supercritical Water
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041801
. 10.1115/1.4037814
26.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
,
2001
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
. 10.1021/jp004368u
27.
Castro-Marcano
,
F.
,
Lobodin
,
V. V.
,
Rodgers
,
R. P.
,
McKenna
,
A. M.
,
Marshall
,
A. G.
, and
Mathews
,
J. P.
,
2012
, “
A Molecular Model for Illinois No. 6 Argonne Premium Coal: Moving Toward Capturing the Continuum Structure
,”
Fuel
,
95
(
1
), pp.
35
49
. 10.1016/j.fuel.2011.12.026
28.
Castro-Marcano
,
F.
,
Russo
,
M. F.
,
van Duin
,
A. C. T.
, and
Mathews
,
J. P.
,
2014
, “
Pyrolysis of a Large-Scale Molecular Model for Illinois No. 6 Coal Using the ReaxFF Reactive Force Field
,”
J. Anal. Appl. Pyrol.
,
109
, pp.
79
89
. 10.1016/j.jaap.2014.07.011
29.
Zheng
,
M.
,
Li
,
X. X.
,
Liu
,
J.
,
Wang
,
Z.
,
Gong
,
X. M.
,
Guo
,
L.
, and
Song
,
W. L.
,
2014
, “
Pyrolysis of Liulin Coal Simulated by GPU-Based ReaxFF MD With Cheminformatics Analysis
,”
Energy Fuel
,
28
(
1
), pp.
522
534
. 10.1021/ef402140n
30.
Mathews
,
J. P.
,
van Duin
,
A. C. T.
, and
Chaffee
,
A. L.
,
2011
, “
The Utility of Coal Molecular Models
,”
Fuel Process. Technol.
,
92
(
4
), pp.
718
728
. 10.1016/j.fuproc.2010.05.037
31.
Mathews
,
J. P.
, and
Chaffee
,
A. L.
,
2012
, “
The Molecular Representations of Coal—A Review
,”
Fuel
,
96
(
1
), pp.
1
14
. 10.1016/j.fuel.2011.11.025
32.
Jurkiewicz
,
A.
,
1987
, “
Spatial System of the Wiser Model of Coal Structure According to the 2nd Moment of the Nuclear-Magnetic-Resonance Line
,”
J. Appl. Phys.
,
62
(
9
), pp.
3892
3897
. 10.1063/1.339235
33.
Castromarcano
,
F.
, and
Mathews
,
J. P.
,
2011
, “
Constitution of Illinois No. 6 Argonne Premium Coal: A Review
,”
Energy Fuel
,
25
(
3
), pp.
845
853
.
34.
Gong
,
X.
,
Wang
,
Z.
,
Deng
,
S.
,
Li
,
S.
,
Song
,
W.
, and
Lin
,
W.
,
2014
, “
Impact of the Temperature, Pressure, and Particle Size on Tar Composition From Pyrolysis of Three Ranks of Chinese Coals
,”
Energy Fuel
,
28
(
8
), pp.
4942
4948
. 10.1021/ef500986h
35.
Gong
,
X.
,
Wang
,
Z.
,
Li
,
S.
,
Song
,
W.
, and
Lin
,
W.
,
2015
, “
Coal Pyrolysis in a Laboratory-Scale Two-Stage Reactor: Catalytic Upgrading of Pyrolytic Vapors
,”
Chem. Eng. Technol.
,
37
(
12
), pp.
2135
2142
. 10.1002/ceat.201300748
36.
Zhang
,
H.
,
2001
,
Nitrogen Evolution and Soot Formation During Secondary Coal Pyrolysis
,
Brigham Young University
,
Provo, UT
.
37.
Sharma
,
A.
,
Takashi Kyotani
,
A.
, and
Tomita
,
A.
,
2001
, “
Direct Observation of Raw Coals in Lattice Fringe Mode Using High-Resolution Transmission Electron Microscopy
,”
Energy Fuel
,
14
(
6
), pp.
1219
1225
. 10.1021/ef0000936
38.
Aktulga
,
H. M.
,
Fogarty
,
J. C.
,
Pandit
,
S. A.
, and
Grama
,
A. Y.
,
2012
, “
Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques
,”
Parallel Comput.
,
38
(
4–5
), pp.
245
259
. 10.1016/j.parco.2011.08.005
39.
Wang
,
H. J.
,
Feng
,
Y. H.
,
Zhang
,
X. X.
,
Lin
,
W.
, and
Zhao
,
Y. L.
,
2015
, “
Study of Coal Hydropyrolysis and Desulfurization by ReaxFF Molecular Dynamics Simulation
,”
Fuel
,
145
, pp.
241
248
. 10.1016/j.fuel.2014.12.074
40.
Jin
,
H.
,
Wu
,
Y.
,
Guo
,
L. J.
, and
Su
,
X. H.
,
2016
, “
Molecular Dynamic Investigation on Hydrogen Production by Polycyclic Aromatic Hydrocarbon Gasification in Supercritical Water
,”
Int. J. Hydrogen Energy
,
41
(
6
), pp.
3837
3843
. 10.1016/j.ijhydene.2016.01.007
41.
Zhao
,
X.
, and
Jin
,
H.
,
2019
, “
Investigation of Hydrogen Diffusion in Supercritical Water: A Molecular Dynamics Simulation Study
,”
Int. J. Heat Mass Transfer
,
133
, pp.
718
728
. 10.1016/j.ijheatmasstransfer.2018.12.164
42.
Zhang
,
C.
,
2015
, “
Imaging the C Black Formation by Acetylene Pyrolysis With Molecular Reactive Force Field Simulations
,”
Phys. Chem. Chem. Phys.
,
17
(
17
), p.
11469
. 10.1039/C5CP00926J
43.
Fenimore
,
C. P.
,
1976
, “
Reactions of Fuel-Nitrogen in Rich Flame Gases
,”
Combust. Flame
,
26
(
2
), pp.
249
256
. 10.1016/0010-2180(76)90075-4
44.
Toof
,
J. L.
,
1986
, “
A Model for the Prediction of Thermal, Prompt, and Fuel NOx Emissions From Combustion Turbines
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
340
347
. 10.1115/1.3239909
You do not currently have access to this content.