Abstract

This research is focused on the gasification performance of coal and its corresponding macerals as well as on the interactions among macerals under typical gasification conditions by Aspen Plus modeling. The synergistic coefficient was employed to show the degree of interactions, while the performance indicators including specific oxygen consumption (SOC), specific coal consumption (SCC), cold gas efficiency (CGE), and effective syngas (CO + H2) content were used to evaluate the gasification process. Sensitivity analyses showed that the parent coal and its macerals exhibited different gasification behaviors at the same operating conditions, such as the SOC and SCC decreased in the order of inertinite > vitrinite > liptinite, whereas CGE changed in the order of liptinite > vitrinite > inertinite. The synergistic coefficients of SOC and SCC for the simulated coals were in the range of 0.94–0.97, whereas the synergistic coefficient of CGE was 1.05–1.13. Moreover, it was found that synergistic coefficients of gasification indicators correlated well with maceral contents. In addition, the increase in temperature was found to promote the synergistic coefficients slightly, whilst at an oxygen to coal mass ratio of 0.8 and a steam to coal mass ratio of 0.8, the highest synergistic coefficient was obtained.

References

1.
IEA
,
2017
, “
Market Series Report: Coal 2017
,” http://www.iea.org/coal2017/#section-2, Accessed 28 December 2018.
2.
Wu
,
H.
,
Li
,
S.
, and
Gao
,
L.
,
2017
, “
Exergy Destruction Mechanism of Coal Gasification by Combining the Kinetic Method and the Energy Utilization Diagram
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062201
. 10.1115/1.4036957
3.
Wang
,
D.
,
Li
,
S.
,
Gao
,
L.
,
Wu
,
H.
, and
Jin
,
H.
,
2018
, “
Novel Coal-Steam Gasification With a Thermochemical Regenerative Process for Power Generation
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092203
. 10.1115/1.4039978
4.
Zhao
,
H.
,
Mu
,
X.
,
Zheng
,
C.
,
Liu
,
S.
,
Zhu
,
Y.
,
Gao
,
X.
, and
Wu
,
T.
,
2019
, “
Structural Defects in 2D MoS2 Nanosheets and Their Roles in the Adsorption of Airborne Elemental Mercury
,”
J. Hazard. Mater.
,
366
(
Mar.
), pp.
240
249
. 10.1016/j.jhazmat.2018.11.107
5.
Maurstad
,
O.
,
2005
, “An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology,”
MIT LFEE 2005-002 WP, Laboratory for Energy and the Environment
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
6.
Guo
,
X.
,
Dai
,
Z.
,
Gong
,
X.
,
Chen
,
X.
,
Liu
,
H.
,
Wang
,
F.
, and
Yu
,
Z.
,
2007
, “
Performance of an Entrained-Flow Gasification Technology of Pulverized Coal in Pilot-Scale Plant
,”
Fuel Process. Technol.
,
88
(
5
), pp.
451
459
. 10.1016/j.fuproc.2006.11.010
7.
Zhu
,
Y.
,
Somasundaram
,
S.
, and
Kemp
,
J. W.
,
2010
, “
Energy and Exergy Analysis of Gasifier-Based Coal-to-Fuel Systems
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021008
. 10.1115/1.4001572
8.
Scott
,
A. C.
,
2002
, “
Coal Petrology and the Origin of Coal Macerals: A Way Ahead?
,”
Int. J. Coal Geol.
,
50
(
1–4
), pp.
119
134
. 10.1016/S0166-5162(02)00116-7
9.
Zhao
,
Y.
,
Hu
,
H.
,
Jin
,
L.
,
He
,
X.
, and
Wu
,
B.
,
2011
, “
Pyrolysis Behavior of Vitrinite and Inertinite From Chinese Pingshuo Coal by TG–MS and in a Fixed Bed Reactor
,”
Fuel Process. Technol.
,
92
(
4
), pp.
780
786
. 10.1016/j.fuproc.2010.09.005
10.
Sun
,
Q.
,
Li
,
W.
,
Chen
,
H.
, and
Li
,
B.
,
2003
, “
The Variation of Structural Characteristics of Macerals During Pyrolysis
,”
Fuel
,
82
(
6
), pp.
669
676
. 10.1016/S0016-2361(02)00356-3
11.
Huang
,
Y.-H.
,
Yamashita
,
H.
, and
Tomita
,
A.
,
1991
, “
Gasification Reactivities of Coal Macerals
,”
Fuel Process. Technol.
,
29
(
1–2
), pp.
75
84
. 10.1016/0378-3820(91)90018-8
12.
Megaritis
,
A.
,
Messenböck
,
R.
,
Chatzakis
,
I.
,
Dugwell
,
D.
, and
Kandiyoti
,
R.
,
1999
, “
High-Pressure Pyrolysis and CO2-Gasification of Coal Maceral Concentrates: Conversions and Char Combustion Reactivities
,”
Fuel
,
78
(
8
), pp.
871
882
. 10.1016/S0016-2361(99)00003-4
13.
Sun
,
Q.
,
Li
,
W.
,
Chen
,
H.
, and
Li
,
B.
,
2004
, “
The CO2-Gasification and Kinetics of Shenmu Maceral Chars With and Without Catalyst
,”
Fuel
,
83
(
13
), pp.
1787
1793
. 10.1016/j.fuel.2004.02.020
14.
Wang
,
J.-H.
, and
Chang
,
L.-P.
,
2015
, “
Pyrolysis and Gasification Reactivity of Several Typical Chinese Coals and Their Macerals
,”
Energ. Source Part A
,
37
(
6
), pp.
670
678
. 10.1080/15567036.2011.594857
15.
Sun
,
Q.
,
Li
,
W.
, and
Li
,
B.
,
2002
, “
The Synergistic Effect Between Macerals During Pyrolysis
,”
Fuel
,
81
(
7
), pp.
973
974
. 10.1016/S0016-2361(01)00205-8
16.
Chang
,
H.
,
Deng
,
H.
,
Yang
,
Q.
,
Du
,
S.
,
Hu
,
F.
, and
Jia
,
C.
,
2017
, “
Interaction of Vitrinite and Inertinite of Bulianta Coal in Pyrolysis
,”
Fuel
,
207
(
Nov.
), pp.
643
649
. 10.1016/j.fuel.2017.05.097
17.
Sun
,
Q.
,
Li
,
W.
,
Chen
,
H.
, and
Li
,
B.
,
2007
, “
The Synergistic Effect Between Coal Macerals During Hydropyrolysis
,”
Energ. Sources Part A
,
29
(
2
), pp.
125
132
. 10.1080/009083190932178
18.
Zubkova
,
V.
,
Kosewska
,
M.
,
Wrobelska
,
K.
, and
Prezhdo
,
V.
,
2005
, “
Synergetic Effects During Carbonisation of Polish Orthocoking Coals
,”
Fuel Process. Technol.
,
86
(
8
), pp.
899
912
. 10.1016/j.fuproc.2004.10.004
19.
Xiangdong
,
K.
,
Zhong
,
W.
,
Wenli
,
D.
, and
Feng
,
Q.
,
2013
, “
Three Stage Equilibrium Model for Coal Gasification in Entrained Flow Gasifiers Based on Aspen Plus
,”
Chinese J. Chem. Eng.
,
21
(
1
), pp.
79
84
. 10.1016/s1004-9541(13)60444-9
20.
Zhao
,
Y.
,
Yu
,
B.
,
Wang
,
B.
,
Zhang
,
S.
, and
Xiao
,
Y.
,
2018
, “
Heat Integration and Optimization of Direct-Fired Supercritical CO2 Power Cycle Coupled to Coal Gasification Process
,”
Appl. Therm. Eng.
,
130
(
Feb.
), pp.
1022
1032
. 10.1016/j.applthermaleng.2017.11.069
21.
Mallick
,
D.
,
Buragohain
,
B.
,
Mahanta
,
P.
, and
Moholkar
,
V. S.
,
2018
, “Gasification of Mixed Biomass: Analysis Using Equilibrium, Semi-equilibrium, and Kinetic Models,”
Coal and Biomass Gasification
,
Springer
,
New York
, pp.
223
241
.
22.
Becker
,
W. L.
,
Penev
,
M.
, and
Braun
,
R. J.
,
2019
, “
Production of Synthetic Natural Gas From Carbon Dioxide and Renewably Generated Hydrogen: A Techno-Economic Analysis of a Power-to-Gas Strategy
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021901
. 10.1115/1.4041381
23.
Martelli
,
E.
,
Kreutz
,
T.
,
Carbo
,
M.
,
Consonni
,
S.
, and
Jansen
,
D.
,
2011
, “
Shell Coal IGCCS with Carbon Capture: Conventional Gas Quench Vs. Innovative Configurations
,”
Appl. Energy
,
88
(
11
), pp.
3978
3989
. 10.1016/j.apenergy.2011.04.046
24.
Higman
,
C.
, and
van der Burgt
,
M.
,
2008
,
Gasification
, 2nd ed,
Gulf Professional Publishing
,
Burlington, VT
, pp.
91
191
.
25.
Collot
,
A.-G.
,
2006
, “
Matching Gasification Technologies to Coal Properties
,”
Int. J. Coal Geol.
,
65
(
3–4
), pp.
191
212
. 10.1016/j.coal.2005.05.003
26.
Fernandez-Lopez
,
M.
,
Pedroche
,
J.
,
Valverde
,
J.
, and
Sanchez-Silva
,
L.
,
2017
, “
Simulation of the Gasification of Animal Wastes in a Dual Gasifier Using Aspen Plus®
,”
Energy Convers. Manage.
,
140
(
May
), pp.
211
217
. 10.1016/j.enconman.2017.03.008
27.
Zhu
,
L.
,
Jiang
,
P.
, and
Fan
,
J.
,
2015
, “
Comparison of Carbon Capture IGCC With Chemical-Looping Combustion and With Calcium-Looping Process Driven by Coal for Power Generation
,”
Chem. Eng. Res. Des.
,
104
(
Dec.
), pp.
110
124
. 10.1016/j.cherd.2015.07.027
28.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
. 10.1115/1.4039601
29.
Fan
,
J.
,
Hong
,
H.
,
Zhu
,
L.
,
Jiang
,
Q.
, and
Jin
,
H.
,
2017
, “
Thermodynamic and Environmental Evaluation of Biomass and Coal Co-Fueled Gasification Chemical Looping Combustion With CO2 Capture for Combined Cooling, Heating and Power Production
,”
Appl. Energy
,
195
(
June
), pp.
861
876
. 10.1016/j.apenergy.2017.03.093
30.
Ogidiama
,
O. V.
,
Zahra
,
M. A.
, and
Shamim
,
T.
,
2018
, “
Techno-Economic Analysis of a Carbon Capture Chemical Looping Combustion Power Plant
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112004
. 10.1115/1.4040193
31.
Xie
,
K.-C.
,
2015
,
Structure and Reactivity of Coal: A Survey of Selected Chinese Coals
,
Springer
,
Heidelberg
, Chap. 3.
32.
Jiao
,
S.
,
2002
, “
Choice of Gasifier′s Pattern for IGCC Power Plant
,”
Gas Turbine Tech.
,
15
(
2
), pp.
5
14
.
33.
Li
,
S.
,
Jin
,
H.
, and
Gao
,
L.
,
2013
, “
Cogeneration of Substitute Natural Gas and Power From Coal by Moderate Recycle of the Chemical Unconverted Gas
,”
Energy
,
55
(
June
), pp.
658
667
. 10.1016/j.energy.2013.03.090
34.
Duan
,
W.
,
Yu
,
Q.
,
Zuo
,
Z.
,
Qin
,
Q.
,
Li
,
P.
, and
Liu
,
J.
,
2014
, “
The Technological Calculation for Synergistic System of BF Slag Waste Heat Recovery and Carbon Resources Reduction
,”
Energy Convers. Manage.
,
87
(
Nov.
), pp.
185
190
. 10.1016/j.enconman.2014.07.029
35.
Seo
,
H.-K.
,
Park
,
S.
,
Lee
,
J.
,
Kim
,
M.
,
Chung
,
S.-W.
,
Chung
,
J.-H.
, and
Kim
,
K.
,
2011
, “
Effects of Operating Factors in the Coal Gasification Reaction
,”
Korean J. Chem. Eng.
,
28
(
9
), p.
1851
. 10.1007/s11814-011-0039-z
36.
Channiwala
,
S.
, and
Parikh
,
P.
,
2002
, “
A Unified Correlation For Estimating HHV of Solid, Liquid and Gaseous Fuels
,”
Fuel
,
81
(
8
), pp.
1051
1063
. 10.1016/S0016-2361(01)00131-4
37.
Bilgen
,
S.
,
Kaygusuz
,
K.
, and
Sari
,
A.
,
2004
, “
Second Law Analysis of Various Types of Coal and Woody Biomass in Turkey
,”
Energ. Source
,
26
(
11
), pp.
1083
1094
. 10.1080/00908310490494621
38.
Elliott
,
M. A.
,
1981
,
Chemistry of Coal Utilization
, Vol.
2
,
John Wiley & Sons
,
New York
.
39.
Edreis
,
E. M. A.
,
Luo
,
G.
,
Li
,
A.
,
Xu
,
C.
, and
Yao
,
H.
,
2014
, “
Synergistic Effects and Kinetics Thermal Behavior of Petroleum Coke/Biomass Blends During H2O Co-Gasification
,”
Energy Convers. Manage.
,
79
(
Mar.
), pp.
355
366
. 10.1016/j.enconman.2013.12.043
40.
Edreis
,
E. M. A.
,
Luo
,
G.
,
Li
,
A.
,
Chao
,
C.
,
Hu
,
H.
,
Zhang
,
S.
,
Gui
,
B.
,
Xiao
,
L.
,
Xu
,
K.
,
Zhang
,
P.
, and
Yao
,
H.
,
2013
, “
CO2 Co-Gasification of Lower Sulphur Petroleum Coke and Sugar Cane Bagasse via TG–FTIR Analysis Technique
,”
Bioresource Technol.
,
136
(
May
), pp.
595
603
. 10.1016/j.biortech.2013.02.112
You do not currently have access to this content.