Abstract

One of the main solutions to climate change is to harness energy from renewable and clean resources. A novel ocean thermal energy conversion (OTEC) system is proposed for the production of methanol; cooling and power is developed and energetically analyzed. In this proposed trigeneration system, a two-stage Rankine cycle that operates on the inherent temperature difference along the depth of the ocean is used for power production, along with an electrolytic cation exchange membrane (ECEM) reactor for carbon dioxide and hydrogen production to feed the methanol production system. The carbon dioxide is sourced from the deep cold seawater, where the concentrations are found to be the highest. The proposed system performance is modeled and simulated on the Aspen Plus, where the performance of the proposed system is assessed under various operating conditions. The results of this study shows that the maximum net power output of the cycle is found to be 51.5 GW, with a fixed rate of district cooling of 69.0 GW. The maximum methanol production rate was found to be 1.36 kg/s at the power input of 51.5 GW. The system is tested under three different operation cases, to fully assess its viability. It should be noted that in all three cases district cooling is included as a product of the system. Case 1: ECEM reactor operates at its current efficiency with fuel production, Case 2: ECEM reactor operates at proton exchange membrane (PEM) efficiency, and Case 3: Only power was produced with no fuel. The maximum overall energy efficiency of the cycle was found to be 8.0, 8.6, and 7.3% for Cases 1, 2, and 3, respectively.

References

References
1.
Hasan
,
A.
, and
Dincer
,
I.
,
2019
, “
Development of an Integrated Wind and PV System for Ammonia and Power Production for a Sustainable Community
,”
J. Cleaner. Prod.
,
231
, pp.
1515
1525
. 10.1016/j.jclepro.2019.05.110
2.
IEA
,
2015
,
CO2 Emissions From Fuel Combustion Highlights
,
IEA
, https://www.iea.org/statistics/co2emissions/https://www.iea.org/statistics/co2emissions/
3.
Hasan
,
A.
, and
Dincer
,
I.
,
2019
, “
Assessment of an Integrated Gasification Combined Cycle using Waste Tires for Hydrogen and Fresh Water Production
,”
Int. J. Hydrogen Energ
,
44
(
36
), pp.
19730
19741
.
4.
Nihous
,
G. C.
,
2005
, “
An Order-of-Magnitude Estimate of Ocean Thermal Energy Conversion Resources
,”
ASME J. Energy Res. Technol.
,
127
(
4
), pp.
328
333
. 10.1115/1.1949624
5.
Hasan
,
A.
, and
Dincer
,
I.
,
2018
,
Comprehensive Energy Systems
,
Elsevier
,
Amsterdam
, pp.
125
168
.
6.
Yeh
,
R.-H.
,
Su
,
T.-Z.
, and
Yang
,
M.-S.
,
2005
, “
Maximum Output of an OTEC Power Plant
,”
Ocean Eng.
,
32
(
5–6
), pp.
685
700
. 10.1016/j.oceaneng.2004.08.011
7.
Ocean Thermal Energy Conversion: An Overview, Solar Energy research institute
, https://www.nrel.gov/docs/legosti/old/3024.pdfhttps://www.nrel.gov/docs/legosti/old/3024.pdf
8.
Yoon
,
J. I.
,
Son
,
C. H.
,
Baek
,
S. M.
,
Ye
,
B. H.
,
Kim
,
H. J.
, and
Lee
,
H. S.
,
2014
, “
Performance Characteristics of a High-Efficiency R717 OTEC Power Cycle
,”
Appl. Therm. Eng.
,
72
(
2
), pp.
304
308
. 10.1016/j.applthermaleng.2014.05.103
9.
Yoon
,
J. I.
,
Seol
,
S. H.
,
Son
,
C. H.
,
Jung
,
S. H.
,
Kim
,
Y. B.
,
Lee
,
H. S.
,
Kim
,
H. J.
, and
Moon
,
J. H.
,
2017
, “
Analysis of the High-Efficiency EP-OTEC Cycle Using R152a
,”
Renewable Energy
,
105
, pp.
366
373
. 10.1016/j.renene.2016.12.019
10.
Yilmaz
,
F.
,
2019
, “
Energy, Exergy and Economic Analyses of a Novel Hybrid Ocean Thermal Energy Conversion System for Clean Power Production
,”
Energy Convers. Manag.
,
196
, pp.
557
566
. 10.1016/j.enconman.2019.06.028
11.
Rajagopalan
,
K.
, and
Nihous
,
G. C.
,
2013
, “
An Assessment of Global Ocean Thermal Energy Conversion Resources With a High-Resolution Ocean General Circulation Model
,”
ASME J. Energy Res. Technol.
,
135
(
4
), p.
041202
. 10.1115/1.4023868
12.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2014
, “
Performance Assessment of a Novel Solar and Ocean Thermal Energy Conversion Based Multigeneration System for Coastal Areas
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p.
011013
. 10.1115/1.4028241
13.
Uehara
,
H.
,
Miyara
,
A.
,
Ikegami
,
Y.
, and
Nakaoka
,
T.
,
1996
, “
Performance Analysis of an OTEC Plant and a Desalination Plant Using an Integrated Hybrid Cycle
,”
ASME J. Sol. Energy Eng.
,
118
(
2
), pp.
115
122
. 10.1115/1.2847976
14.
Kobayashi
,
H.
,
Jitsuhara
,
S.
, and
Uehara
,
H.
, “
The Present Status and Features of OTEC and Recent Aspects of Thermal Energy Conversion Technology
,”
Int. J. Sol. Energy
,
16
(
4
), pp.
217
231
15.
Gornietz
,
V.
,
1995
,
Encyclopedia of Paloclimatology and Ancient Enviroments
,
Springer
.
16.
Willauer
,
H. D.
,
DiMascio
,
F.
,
Hardy
,
D. R.
, and
Williams
,
F. W.
,
2014
, “
Feasibility of CO2 Extraction From Seawater and Simultaneous Hydrogen Gas Generation Using a Novel and Robust Electrolytic Cation Exchange Module Based on Continuous Electrodeionization Technology
,”
Ind. Eng. Chem. Res.
,
53
(
31
), pp.
12192
12200
. 10.1021/ie502128x
17.
U.S. Navy
,
2012
, “
US Navy Research Aims to Produce Fuel From Sea Water
,”
Membr. Technol.
,
2012
(
10
), p.
10
. 10.1016/S0958-2118(12)70212-4
18.
Eisaman
,
M. D.
,
Parajuly
,
K.
,
Tuganov
,
A.
,
Eldershaw
,
C.
,
Chang
,
N.
, and
Littau
,
K. A.
,
2012
, “
CO2 Extraction From Seawater Using Bipolar Membrane Electrodialysis
,”
Energy Environ. Sci.
,
5
(
6
), pp.
7346
7352
. 10.1039/c2ee03393c
19.
Willauer
,
H. D.
,
DiMascio
,
F.
,
Hardy
,
D. R.
, and
Williams
,
F. W.
,
2017
, “
Development of an Electrolytic Cation Exchange Module for the Simultaneous Extraction of Carbon Dioxide and Hydrogen Gas from Natural Seawater
,”
Energy & Fuels
,
31
(
2
), pp.
1723
1730
.
20.
Rihko-Struckmann
,
L. K.
,
Peschel
,
A.
,
Hanke-Rauschenbach
,
R.
, and
Sundmacher
,
K.
,
2010
, “
Assessment of Methanol Synthesis Utilizing Exhaust CO2 for Chemical Storage of Electrical Energy
,”
Ind. Eng. Chem. Res.
,
49
(
21
), pp.
11073
11078
. 10.1021/ie100508w
21.
Bharathan
,
D.
,
2009
, “
Staging Rankine Cycles Using Ammonia for OTEC Power Production
.”
22.
Neill
,
S. P.
, and
Hashemi
,
M. R.
,
Fundamentals of Ocean Renewable Energy : Generating Electricity From the Sea
,
Elsevier
.
23.
Hasan
,
A.
, and
Dincer
,
I.
,
2019
, “
Experimental Evaluation of Thermal Management Options for Bags
,”
Appl. Therm. Eng.
,
148
, pp.
1202
1209
. 10.1016/j.applthermaleng.2018.10.082
You do not currently have access to this content.