Abstract

Scaling porosity of sedimentary rocks from the scale of measurement to the scale of interest is still a challenge. Upscaling of porosity can assist to accurately predict other petrophysical properties of rock at multiple scales. In this study, we use the two-dimensional (2D) scanning electron microscope (SEM) and three-dimensional (3D) X-ray micro-computed tomography (micro-CT) image to upscale porosity from the image scale to the core plug scale. A systematic imaging plan is deployed to capture rock properties of a carbonate and a sandstone sample, which are sensitive to the fractal nature of these rocks. Image analysis records wider pore spectrum (0.12–50 µm) in the carbonate sample than in sandstone (0.12–30 µm). The fractal dimensions are also higher in the carbonate than in the sandstone sample. Median, volume-weighted average of pore radius, and fractal dimensions derived from the image analysis are used as inputs in this equation. The results of the present study using this equation yielded to the best results on a resolution of 2.5 µm/voxel in the sandstone and 2.01 µm/voxel resolution in the carbonate sample for 3D micro-CT images, where fractal-scaling porosity matches well with the porosity measured at the core plug scale. The 2D SEM images provided a good estimation of porosity in the sandstone sample, where micro-CT imaging techniques could not capture the full pore spectrum. The fractal porosity equation showed promising results and offers a potential alternative way to estimate porosity when there are no routine core measurements available.

References

References
1.
Mandelbrot
,
B. B.
,
1982
,
The Fractal Geometry of Nature
, Revised ed.,
W. H. Freeman and Company
,
San Francisco
.
2.
Katz
,
A. J.
, and
Thompson
,
A. H.
,
1985
, “
Fractal Sandstone Pores: Implications for Conductivity and Pore Formation
,”
Phys. Rev. Lett.
,
54
(
12
), pp.
1325
1328
. 10.1103/PhysRevLett.54.1325
3.
Cai
,
J.
, and
Yu
,
B.
,
2011
, “
A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media
,”
Transp. Porous Media
,
89
(
2
), pp.
251
263
. 10.1007/s11242-011-9767-0
4.
Wang
,
S.
, and
Yu
,
B.
,
2011
, “
Study of the Effect of Capillary Pressure on the Permeability of Porous Media Embedded With a Fractal-Like Tree Network
,”
Int. J. Multiph. Flow
,
37
(
5
), pp.
507
513
. 10.1016/j.ijmultiphaseflow.2011.01.007
5.
Harte
,
D.
,
2001
,
Multifractals
,
Chapman & Hall
,
London
.
6.
Falconer
,
K. J.
, and
Lammering
,
B.
,
2003
, “
Fractal Properties of Generalized Sierpiński Triangles
,”
Fractals
,
6
(
1
), pp.
31
41
. 10.1142/s0218348x98000055
7.
Wong
,
P. Z.
,
Howard
,
J.
, and
Lin
,
J. S.
,
1986
, “
Surface Roughening and the Fractal Nature of Rocks
,”
Phys. Rev. Lett.
,
57
(
5
), pp.
637
640
. 10.1103/PhysRevLett.57.637
8.
Krohn
,
C. E.
,
1988
, “
Fractal Measurements of Sandstones, Shales, and Carbonates
,”
J. Geophys. Res.
,
93
(
B4
), p.
3297
. 10.1029/JB093iB04p03297
9.
Padhy
,
G. S.
,
Lemaire
,
C.
,
Amirtharaj
,
E. S.
, and
Ioannidis
,
M. A.
,
2007
, “
Pore Size Distribution in Multiscale Porous Media as Revealed by DDIF-NMR, Mercury Porosimetry and Statistical Image Analysis
,”
Colloids Surf., A
,
300
(
1–2
), pp.
222
234
. 10.1016/j.colsurfa.2006.12.039
10.
Xie
,
S.
,
Cheng
,
Q.
,
Ling
,
Q.
,
Li
,
B.
,
Bao
,
Z.
, and
Fan
,
P.
,
2010
, “
Fractal and Multifractal Analysis of Carbonate Pore-Scale Digital Images of Petroleum Reservoirs
,”
Mar. Pet. Geol.
,
27
(
2
), pp.
476
485
. 10.1016/j.marpetgeo.2009.10.010
11.
Zhang
,
F.
,
Zhou
,
H.
, and
Z
,
Y.
,
2010
, “3D Reconstruction of Rock Cracks CT Image Fractal Damage Study,”
Information Technology in Geo-Engineering
,
D. G.
Toll
, ed.,
IOS Press
,
Amsterdam, The Netherlands
, pp.
157
166
.
12.
Jouini
,
M. S.
,
Vega
,
S.
, and
Mokhtar
,
E. A.
,
2011
, “
Multiscale Characterization of Pore Spaces Using Multifractals Analysis of Scanning Electronic Microscopy Images of Carbonates
,”
Nonlinear Proc. Geoph.
,
18
(
6
), pp.
941
953
. 10.5194/npg-18-941-2011
13.
Zhang
,
Z.
, and
Weller
,
A.
,
2014
, “
Fractal Dimension of Pore-Space Geometry of an Eocene Sandstone Formation
,”
Geophys.
,
79
(
6
), pp.
D377
D387
. 10.1190/geo2014-0143.1
14.
Vega
,
S.
, and
Jouini
,
M. S.
,
2015
, “
2D Multifractal Analysis and Porosity Scaling Estimation in Lower Cretaceous Carbonates
,”
Geophys.
,
80
(
6
), pp.
D575
D586
. 10.1190/geo2014-0596.1
15.
Liu
,
Y.
,
Liu
,
Y.
,
Sun
,
L. U.
, and
Liu
,
J.
,
2016
, “
Multiscale Fractal Characterization of Hierarchical Heterogeneity in Sandstone Reservoirs
,”
Fractals
,
24
(
03
), p.
1650032
. 10.1142/S0218348X16500328
16.
Zhang
,
S.
,
Xian
,
X.
,
Zhou
,
J.
,
Liu
,
G.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Lu
,
Z.
,
2018
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054502
. 10.1115/1.4039022
17.
Davis
,
H. T.
,
1989
, “
On the Fractal Character of the Porosity of Natural Sandstone
,”
EPL
,
8
(
7
), pp.
629
632
. 10.1209/0295-5075/8/7/008
18.
Angulo
,
R. F.
,
Alvarado
,
V.
, and
Gonzalez
,
H.
,
1992
, “
Fractal Dimensions From Mercury Intrusion Capillary Tests
,”
SPE Latin America Petroleum Engineering Conference
,
Caracas, Venezuela
,
Mar. 8–11
, pp.
255
263
.
19.
Li
,
K.
,
2004
, “
Generalized Capillary Pressure and Relative Permeability Model Inferred From Fractal Characterization of Porous Media
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
.
20.
Zhao
,
X.
,
Yang
,
Z.
,
Lin
,
W.
,
Xiong
,
S.
,
Luo
,
Y.
,
Wang
,
Z.
,
Chen
,
T.
,
Xia
,
D.
, and
Wu
,
Z.
,
2019
, “
Study on Pore Structures of Tight Sandstone Reservoirs Based on Nitrogen Adsorption, High-Pressure Mercury Intrusion, and Rate-Controlled Mercury Intrusion
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112903
. 10.1115/1.4043695
21.
Pape
,
H.
,
Riepe
,
L.
, and
Schopper
,
J. R.
,
1987
, “
Theory of Self-Similar Network Structures in Sedimentary and Igneous Rocks and Their Investigation With Microscopical and Physical Methods
,”
J. Microsc.
,
148
(
2
), pp.
121
147
. 10.1111/j.1365-2818.1987.tb02861.x
22.
Stallmach
,
F.
,
Vogt
,
C.
,
Kärger
,
J.
,
Helbig
,
K.
, and
Jacobs
,
F.
,
2002
, “
Fractal Geometry of Surface Areas of Sand Grains Probed by Pulsed Field Gradient NMR
,”
Phys. Rev. Lett.
,
88
(
10
), p.
105505
. 10.1103/PhysRevLett.88.105505
23.
Zhang
,
P.
,
Lu
,
S.
,
Li
,
J.
,
Chen
,
C.
,
Xue
,
H.
, and
Zhang
,
J.
,
2018
, “
Petrophysical Characterization of oil-Bearing Shales by Low-Field Nuclear Magnetic Resonance (NMR)
,”
Mar. Pet. Geol.
,
89
(
Part 3
), pp.
775
785
. 10.1016/j.marpetgeo.2017.11.015
24.
Ren
,
X.
,
Li
,
A.
,
Memon
,
A.
,
Fu
,
S.
,
Wang
,
G.
, and
He
,
B.
,
2019
, “
Experimental Simulation on Imbibition of the Residual Fracturing Fluid in Tight Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082905
. 10.1115/1.4042734
25.
Krohn
,
C. E.
, and
Thompson
,
A. H.
,
1986
, “
Fractal Sandstone Pores: Automated Measurements Using Scanning-Electron-Microscope Images
,”
Phys. Rev. B
,
33
(
9
), pp.
6366
6374
. 10.1103/PhysRevB.33.6366
26.
Krohn
,
C. E.
,
1988
, “
Sandstone Fractal and Euclidean Pore Volume Distributions
,”
J. Geophys. Res.
,
93
(
B4
), p.
3286
. 10.1029/JB093iB04p03286
27.
Chen
,
X.
,
Yao
,
G.
,
Cai
,
J.
,
Huang
,
Y.
, and
Yuan
,
X.
,
2017
, “
Fractal and Multifractal Analysis of Different Hydraulic Flow Units Based on Micro-CT Images
,”
J. Nat. Gas Sci. Eng.
,
48
, pp.
145
156
. 10.1016/j.jngse.2016.11.048
28.
Thompson
,
A. H.
,
Katz
,
A. J.
, and
Krohn
,
C. E.
,
1987
, “
The Microgeometry and Transport Properties of Sedimentary Rock
,”
Adv. Phys.
,
36
(
5
), pp.
625
694
. 10.1080/00018738700101062
29.
Posadas
,
A. N. D.
,
Giménez
,
D.
,
Quiroz
,
R.
, and
Protz
,
R.
,
2003
, “
Multifractal Characterization of Soil Pore Systems
,”
Soil Sci. Soc. Am. J.
,
67
(
5
), p.
1361
. 10.2136/sssaj2003.1361
30.
Stanczak
,
G.
,
2014
, “
Fractal Analysis of the Pore Space in Sandstones as Derived From Mercury Porosimetry and Image Analysis
,”
International Multidisciplinary Microscopy Congress
,
Antalya, Turkey
,
Oct. 10–13
, Vol.
154
.
31.
Yang
,
Y.
,
Yang
,
H.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W.
,
Zhang
,
K.
, and
Luquot
,
L.
,
2019
, “
Microscopic Determination of Remaining Oil Distribution in Sandstones With Different Permeability Scales Using Computed Tomography Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
. 10.1115/1.4043131
32.
Cnudde
,
V.
,
Boone
,
M.
,
Dewanckele
,
J.
,
Dierick
,
M.
,
Van Hoorebeke
,
L.
, and
Jacobs
,
P.
,
2011
, “
3D Characterization of Sandstone by Means of X-ray Computed Tomography
,”
Geosphere
,
7
(
1
), pp.
54
61
. 10.1130/GES00563.1
33.
De Boever
,
W.
,
Derluyn
,
H.
,
Van Loo
,
D.
,
Van Hoorebeke
,
L.
, and
Cnudde
,
V.
,
2015
, “
Data-Fusion of High Resolution X-ray CT, SEM and EDS for 3D and Pseudo-3D Chemical and Structural Characterization of Sandstone
,”
Micron
,
74
, pp.
15
21
. 10.1016/j.micron.2015.04.003
34.
Munawar
,
M. J.
,
Lin
,
C.
,
Cnudde
,
V.
,
Bultreys
,
T.
,
Dong
,
C.
,
Zhang
,
X.
,
De Boever
,
W.
,
Aleem Zahid
,
M.
, and
Wu
,
Y.
,
2018
, “
Petrographic Characterization to Build an Accurate Rock Model Using Micro-CT: Case Study on Low-Permeable to Tight Turbidite Sandstone From Eocene Shahejie Formation
,”
Micron
,
109
, pp.
22
33
. 10.1016/j.micron.2018.02.010
35.
Chen
,
W.-S.
,
Yuan
,
S.-Y.
, and
Hsieh
,
C.-M.
,
2003
, “
Two Algorithms to Estimate Fractal Dimension of Gray-Level Images
,”
Opt. Eng.
,
42
(
8
), p.
2452
. 10.1117/1.1585061
36.
Li
,
A.
,
Ding
,
W.
,
Jiu
,
K.
,
Wang
,
Z.
,
Wang
,
R.
, and
He
,
J.
,
2018
, “
Investigation of the Pore Structures and Fractal Characteristics of Marine Shale Reservoirs Using NMR Experiments and Image Analyses: A Case Study of the Lower Cambrian Niutitang Formation in Northern Guizhou Province, South China
,”
Mar. Pet. Geol.
,
89
(
Part 3
), pp.
530
540
. 10.1016/j.marpetgeo.2017.10.019
37.
Vicente
,
J.
,
Wyart
,
Y.
, and
Moulin
,
P.
,
2013
, “
Characterization (Two-Dimensional-Three-Dimensional) of Ceramic Microfiltration Membrane by Synchrotron Radiation: New and Abraded Membranes
,”
J. Porous Media
,
16
(
6
), pp.
537
545
. 10.1615/JPorMedia.v16.i6.50
38.
Mehmani
,
A.
, and
Prodanović
,
M.
,
2014
, “
The Effect of Microporosity on Transport Properties in Porous Media
,”
Adv. Water Resour.
,
63
, pp.
104
119
. 10.1016/j.advwatres.2013.10.009
39.
Sagan
,
H.
,
1994
,
Space-Filling Curves
,
S.
Shekhar
and
H.
Xiong
, eds.,
Springer-Verlag
,
Berlin
, pp.
9
30
.
40.
Vicsek
,
M.
, and
Vicsek
,
T.
,
1997
, “
Aggregation Models of Fractal Growth
,”
Centrum Voor Wiskunde En Informatica Quarterly
,
10
(
2
), pp.
153
178
. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8749
41.
Zhao
,
W.
,
Zhang
,
Y.
,
Xu
,
B.
,
Li
,
P.
,
Wang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082003
. 10.1115/1.4039775
42.
Xia
,
Y.
,
Cai
,
J.
,
Wei
,
W.
,
Hu
,
X.
,
Wang
,
X.
, and
Ge
,
X.
,
2017
, “
A New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution
,”
Fractals
,
26
(
01
), p.
1850006
. 10.1142/S0218348X18500068
43.
Cai
,
J.
,
Luo
,
L.
,
Ye
,
R.
,
Zeng
,
X.
, and
Hu
,
X.
,
2015
, “
Recent Advances on Fractal Modeling of Permeability for Fibrous Porous Media
,”
Fractals
,
23
(
01
), p.
1540006
. 10.1142/S0218348X1540006X
You do not currently have access to this content.