Abstract

Ammonia borane (AB) is deemed to be the most promising energy storage material with varieties of exceptional properties, most reports mainly discuss its application in hydrogen storage and release as the hydrogen storage materials, which intends to address the hydrogen storage issues of on-board hydrogen fuel cell. However, some other promising applications of AB have also been confirmed by researchers, although these applications have not been intensively studied like its application of hydrogen storage materials. The article mainly introduce the synthesis, dehydrogenation (themolysis, hydrolysis, and methanolysis), and regeneration of AB and highlight the applications in green propulsion system of rocket, portable hydrogen source for on-board fuel cell, chemical catalysis, and electrochemical energy systems. In the meantime, the main achievements, current developments, limitations, and challenges in AB for advanced energy technology applications are briefly discussed. This article will provide inspiration for expanding the application of AB in the future.

References

1.
Rausch
,
B.
,
Symes
,
M. D.
,
Chisholm
,
G.
, and
Cronin
,
L.
,
2014
, “
Decoupled Catalytic Hydrogen Evolution From a Molecular Metal Oxide Redox Mediator in Water Splitting
,”
Science
,
6202
(
345
), pp.
1326
1330
. 10.1126/science.1257443
2.
Hijazi
,
I.
,
Zhang
,
Y.
, and
Fuller
,
R.
,
2019
, “
A Simple Palladium Hydride Embedded Atom Method Potential for Hydrogen Energy Applications
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061202
. 10.1115/1.4042405
3.
Li
,
H. J.
,
Chen
,
Y. R.
,
Yan
,
Y. F.
, and
Feng
,
S.
,
2018
, “
Numerical Study on Heat Transfer Enhanced in a Micro Combustor With Staggered Cylindrical Array for Micro-TPV System
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
. 10.1115/1.4040191
4.
Li
,
H. J.
,
Yan
,
Y. F.
,
Feng
,
S.
, and
Chen
,
Y. R.
,
2019
, “
Hydrogen Release Mechanism and Performance of Ammonia Borane Catalyzed by Transition Metal Catalysts Cu-Co/MgO(100)
,”
Int. J. Energy Res.
,
43
(
2
), pp.
921
930
. 10.1002/er.4325
5.
Yan
,
Y. F.
,
Wu
,
G. E.
,
Huang
,
W. P.
, and
Zhang
,
L.
,
2019
, “
Numerical Comparison Study of Methane Catalytic Combustion Characteristic Between Newly Proposed Opposed Counter-Flow Micro-Combustor and the Conventional Ones
,”
Energy
,
170
, pp.
403
410
. 10.1016/j.energy.2018.12.114
6.
Shore
,
S. G.
, and
Parry
,
R. W.
,
1955
, “
The Crystalline Compound Ammonia-Borane,1 H3NBH3
,”
J. Am. Chem. Soc.
,
77
(
4
), pp.
19
20
.
7.
Wang
,
W.
,
Lu
,
Z. H.
,
Luo
,
Y.
,
Zou
,
A. H.
,
Yao
,
Q. L.
, and
Chen
,
X.
,
2018
, “
Mesoporous Carbon Nitride Supported Pd and Pd-Ni Nanoparticles as Highly Efficient Catalyst for Catalytic Hydrolysis of NH3BH3
,”
ChemCatChem
,
10
(
7
), pp.
1620
1626
. 10.1002/cctc.201701989
8.
Yang
,
K. K.
,
Yao
,
Q. L.
,
Huang
,
W.
,
Chen
,
X. S.
, and
Lu
,
Z. H.
,
2017
, “
Enhanced Catalytic Activity of Ni M (M = Cr, Mo, W) Nanoparticles for Hydrogen Evolution From Ammonia Borane and Hydrazine Borane
,”
Int. J. Hydrogen Energy
,
42
(
10
), pp.
6840
6850
. 10.1016/j.ijhydene.2016.12.029
9.
Cui
,
C. C.
,
Liu
,
Y. Y.
,
Mehdi
,
S.
,
Wen
,
H.
,
Zhou
,
B. J.
,
Li
,
J. P.
, and
Li
,
B. J.
,
2020
, “
Enhancing Effect of Fe-Doping on the Activity of Nano Ni Catalyst Towards Hydrogen Evolution From NH3BH3
,”
Appl. Catal. B: Environ.
,
265
, p.
118612
. 10.1016/j.apcatb.2020.118612
10.
Song
,
H. Q.
,
Cheng
,
Y. J.
,
Li
,
B. J.
,
Fan
,
Y. P.
,
Liu
,
B. Z.
,
Tang
,
Z. Y.
, and
Lu
,
S. Y.
,
2020
, “
Carbon Dots and RuP2 Nanohybrid as an Efficient Bifunctional Catalyst for Electrochemical Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane
,”
ACS Sustainable Chem. Eng.
,
8
(
9
), pp.
3995
4002
. 10.1021/acssuschemeng.0c00745
11.
Kumar
,
R.
,
Karkamkar
,
A.
,
Bowden
,
M.
, and
Autrey
,
T.
,
2019
, “
Solid-State Hydrogen Rich Boron-Nitrogen Compounds for Energy Storage
,”
Chem. Soc. Rev.
,
48
(
21
), pp.
5350
5380
. 10.1039/C9CS00442D
12.
Akbayrak
,
S.
, and
Özkar
,
S.
,
2018
, “
Ammonia Borane as Hydrogen Storage Materials
,”
Int. J. Hydrogen Energy
,
43
(
40
), pp.
18592
18606
. 10.1016/j.ijhydene.2018.02.190
13.
Demirci Umit
,
B.
,
2017
, “
Ammonia Borane, a Material With Exceptional Properties for Chemical Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
9978
10013
. 10.1016/j.ijhydene.2017.01.154
14.
Zhan
,
W. W.
,
Zhu
,
Q. L.
, and
Xu
,
Q.
,
2016
, “
Dehydrogenation of Ammonia Borane by Metal Nanoparticle Catalysts
,”
ACS Catal.
,
6
(
10
), pp.
6892
6905
. 10.1021/acscatal.6b02209
15.
Rossin
,
A.
, and
Peruzzini
,
M.
,
2016
, “
Ammonia-Borane and Amine-Borane Dehydrogenation Mediated by Complex Metal Hydrides
,”
Chem. Rev.
,
116
(
15
), pp.
8848
8872
. 10.1021/acs.chemrev.6b00043
16.
Li
,
H. Z.
,
Yang
,
Q. Y.
,
Chen
,
X. N.
, and
Shore
,
S. G.
,
2014
, “
Ammonia Borane, Past as Prolog
,”
J. Organomet. Chem.
,
751
, pp.
60
66
. 10.1016/j.jorganchem.2013.08.044
17.
Shore
,
S. G.
, and
Parry
,
R. W.
,
1958
, “
Chemical Evidence for the Structure of the “Diammoniate of Diborane.” II. The Preparation of Ammonia-Borane
,”
J. Am. Chem. Soc.
,
80
(
1
), p.
8
12
. 10.1021/ja01534a003
18.
Shore
,
S. G.
, and
Boddeker
,
K. W.
,
1964
, “
Large Scale Synthesis of H2B(NH3)3+BH4- and NH3BH3
,”
Inorg. Chem.
,
3
(
6
), pp.
914
915
. 10.1021/ic50016a038
19.
Heldebrant
,
D. J.
,
Karkamkar
,
A.
,
Linehan
,
J. C.
, and
Autrey
,
T.
,
2008
, “
Synthesis of Ammonia Borane for Hydrogen Storage Applications
,”
Energy Environ. Sci.
,
1
(
1
), pp.
156
160
. 10.1039/b808865a
20.
Ramachandran
,
P. V.
, and
Gagare
,
P. D.
,
2007
, “
Preparation of Ammonia Borane in High Yield and Purity, Methanolysis, and Regeneration
,”
Inorg. Chem.
,
46
(
19
), pp.
7810
7817
. 10.1021/ic700772a
21.
Ramachandran
,
P. V.
,
Raju
,
B. C.
, and
Gagare
,
P. D.
,
2012
, “
One-Pot Synthesis of Ammonia Borane and TrialkylAmmonia Boranes From Trimethyl Borate
,”
Org. Lett.
,
24
(
14
), pp.
6119
6121
. 10.1021/ol302421t
22.
Ramachandran
,
P. V.
,
Mistry
,
H.
,
Kulkarni
,
A. S.
, and
Gagare
,
P. D.
,
2014
, “
Ammonia-Mediated, Large-Scale Synthesis of Ammonia Borane
,”
Dalton Trans.
,
43
(
44
), pp.
16580
16583
. 10.1039/C4DT02467B
23.
Ramachandran
,
P. V.
, and
Kulkarni
,
A. S.
,
2015
, “
Open-Flask Synthesis of Ammonia Boranes via Tandem Amine-Ammonium Salt Equilibration-Metathesis
,”
Inorg. Chem.
,
54
(
12
), pp.
5618
5620
. 10.1021/acs.inorgchem.5b00572
24.
Gao
,
H. X.
, and
Shreeve
,
J. M.
,
2012
, “
Ionic Liquid Solubilized Boranes as Hypergolic Fluids
,”
J. Mater. Chem.
,
22
(
22
), pp.
11022
11024
. 10.1039/c2jm31627g
25.
Gao
,
H. X.
,
Li
,
S. Q.
,
Thottempudi
,
V.
, and
Maciejewski
,
J. P.
,
2014
, “
Hypergolic Ionic Liquid Fuels and Oxidizers
,”
Int. J. Energy Mater. Chem. Propul.
,
13
(
3
), pp.
251
285
. 10.1615/intjenergeticmaterialschemprop.2014011111
26.
Ramachandran
,
P. V.
,
Kulkarni
,
A. S.
,
Pfeil
,
M. A.
, and
Dennis
,
J. D.
,
2014
, “
Ammonia Boranes: Green Hypergolic Fuels With Consistently Low Ignition Delays
,”
Chem. Eur. J.
,
20
(
51
), pp.
16869
16872
. 10.1002/chem.201405224
27.
Baier
,
M. J.
,
Ramachandran
,
P. V.
, and
Son
,
S. F.
,
2019
, “
Characterization of the Hypergolic Ignition Delay of Ammonia Borane
,”
J. Propul. Power
,
35
(
1
), pp.
182
189
. 10.2514/1.B37075
28.
Pfeil
,
M. A.
,
Kulkarni
,
A. S.
,
Ramachandran
,
P. V.
,
Son
,
S. F.
, and
Heister
,
S. D.
,
2016
, “
Solid Ammonia Boranes as High Performance and Hypergolic Hybrid Rocket Fuels
,”
J. Propul. Power
,
32
(
1
), pp.
23
31
. 10.2514/1.B35591
29.
Bhosale
,
V. K.
,
Jeong
,
J.
, and
Kwon
,
S.
,
2019
, “
Ignition of Boron-Based Green Hypergolic Fuels With Hydrogen Peroxide
,”
Fuel
,
255
, p.
115729
. 10.1016/j.fuel.2019.115729
30.
Bhosale
,
V. K.
,
Karnik
,
S.
, and
Kulkarni
,
P. S.
,
2019
, “
Ignition Study of Amine Borane/Cyanoborane Based Green Hypergolic Fuels
,”
Combust. Flame
,
210
, pp.
1
8
. 10.1016/j.combustflame.2019.08.015
31.
Zhao
,
D.
,
Hao
,
L.
, and
Shaw
,
L.
,
2020
, “
New Insights Into the Solid-State Hydrogen Storage of Nanostructured LiBH4-MgH2 System
,”
Chem. Eng. J.
,
385
, p.
123856
. 10.1016/j.cej.2019.123856
32.
Rao
,
C. S.
,
Zhang
,
X.
,
Yang
,
J. H.
,
Liu
,
Q.
, and
Zhou
,
Y. F.
,
2020
, “
Effect of C10H10Cl2Ti on Hydrogen Storage Properties of 6LiBH(4)-CaH2-3MgH(2) System
,”
Chin. J. Inorg. Chem.
,
35
(
12
), pp.
2233
2242
.
33.
Wang
,
L.
,
Liu
,
Y. Y.
,
Ashraf
,
S.
,
Jiang
,
J. C.
,
Han
,
G. S.
,
Gao
,
J.
,
Wu
,
X. L.
, and
Li
,
B. J.
,
2019
, “
Pitaya Pulp Structural Cobalt-Carbon Composite for Efficient Hydrogen Generation From Borohydride Hydrolysis
,”
J. Alloy Compd.
,
808
, p.
151774
. 10.1016/j.jallcom.2019.151774
34.
Pedraza
,
M. J.
,
Cot
,
D.
,
Petit
,
E.
,
Aguey-Zinsou
,
K. F.
,
Alauzun
,
J. G.
, and
Demirci
,
U. B.
,
2019
, “
Ammonia Borane Nanospheres for Hydrogen Storage
,”
ACS Appl. Nano Mater.
,
2
(
2
), pp.
1129
1138
. 10.1021/acsanm.9b00176
35.
Hu
,
M. M.
,
Xie
,
X. B.
,
Chen
,
M.
,
Zhu
,
C. X.
, and
Liu
,
T.
,
2020
, “
TiCX-Decorated Mg Nanoparticles Confined in Carbon Shell: Preparation and Catalytic Mechanism for Hydrogen Storage
,”
J Alloys Compd.
,
817
, p.
152813
. 10.1016/j.jallcom.2019.152813
36.
Wijiyanti
,
R.
,
Gunawan
,
T.
,
Nasri
,
N. S.
,
Karim
,
Z. A.
,
Ismail
,
A. F.
, and
Widiastuti
,
N.
,
2020
, “
Hydrogen Adsorption Characteristics for Zeolite-Y Templated Carbon
,”
Int. J. Chem.
,
20
(
1
), pp.
29
42
. 10.22146/ijc.38978
37.
Molefe
,
L. Y.
,
Musyoka
,
N. M.
,
Ren
,
J. W.
,
Langmi
,
H. W.
,
Mathe
,
M.
, and
Ndungu
,
P. G.
,
2019
, “
Polymer-Based Shaping Strategy for Zeolite Templated Carbons (ZTC) and Their Metal Organic Framework (MOF) Composites for Improved Hydrogen Storage Properties
,”
Front. Chem.
,
7
, p.
864
. 10.3389/fchem.2019.00864
38.
Wang
,
Y. Q.
,
Lan
,
Z. Q.
,
Huang
,
X. T.
,
Liu
,
H. Z.
, and
Guo
,
J.
,
2019
, “
Study on Catalytic Effect and Mechanism of MOF(MOF = ZIF-8, ZIF-67, MOF-74) on Hydrogen Storage Properties of Magnesium
,”
Int. J. Hydrogen Energy
,
44
(
54
), pp.
28863
28873
. 10.1016/j.ijhydene.2019.09.110
39.
Crabtree
,
R. H.
,
Siegbahn
,
P. E. M.
,
Eisenstein
,
O.
,
Rheinhold
,
A. L.
, and
Koetzle
,
T. F.
,
1996
, “
A New Intermolecular Interaction:Unconventional Hydrogen Bonds With Element-Hydride Bonds as Proton Acceptor
,”
Acc. Chem. Res.
,
29
(
7
), pp.
348
354
. 10.1021/ar950150s
40.
Li
,
J.
,
Kathmann
,
S. M.
,
Hu
,
H. S.
,
Schenter
,
G. K.
,
Autrey
,
T.
, and
Gutowski
,
M.
,
2010
, “
Theoretical Investigations on the Formation and Dehydrogenation Reaction Pathways of H(NH2BH2)nH (n=1-4) Oligomers: Importance of Dihydrogen Interactions
,”
Inorg. Chem.
,
49
(
17
), pp.
7710
7720
. 10.1021/ic100418a
41.
Wolstenholme
,
D. J.
,
Dobson
,
J. L.
, and
McGrady
,
G. S.
,
2015
, “
Homopolar Dihydrogen Bonding in Main Group Hydrides: Discovery, Consequences, and Applications
,”
Dalton Trans.
,
44
(
21
), pp.
9718
9731
. 10.1039/C5DT00221D
42.
Mayer
,
E.
,
1973
, “
Conversion of Dihydridodiammineboron (III) Borohydride to Ammonia-Borane Without Hydrogen Evolution
,”
Inorg. Chem.
,
12
(
8
), pp.
1954
1955
. 10.1021/ic50126a060
43.
Diwan
,
M.
,
Hwang
,
H. T.
,
Al-Kukhun
,
A.
, and
Varma
,
A.
,
2011
, “
Hydrogen Generation From Noncatalytic Hydrothermolysis of Ammonia Borane for Vehicle Applications
,”
AIChE J.
,
57
(
1
), pp.
259
264
. 10.1002/aic.12240
44.
Hwang
,
H. T.
, and
Varma
,
A.
,
2014
, “
Hydrogen Storage for Fuel Cell Vehicles
,”
Curr. Opin. Chem. Eng.
,
5
, pp.
42
48
. 10.1016/j.coche.2014.04.004
45.
Tong
,
M. Q.
,
Yin
,
Z. F.
,
Wang
,
Y.
, and
Chen
,
G. J.
,
2013
, “
Dehydrogenation Mechanisms of Ammonia Borane Catalyzed by Pd Atoms Adsorbed on an MgO(100) Surface
,”
Int. J. Hydrogen Energy
,
38
(
35
), pp.
15285
15294
. 10.1016/j.ijhydene.2013.09.097
46.
Chandra
,
M.
, and
Xu
,
Q.
,
2006
, “
A High-Performance Hydrogen Generation System: Transition Metal-Catalyzed Dissociation and Hydrolysis of Ammonia-Borane
,”
J. Power Sources
,
156
(
2
), pp.
190
194
. 10.1016/j.jpowsour.2005.05.043
47.
Chandra
,
M.
, and
Xu
,
Q.
,
2006
, “
Dissociation and Hydrolysis of Ammonia-Borane With Solid Acids and Carbon Dioxide: An Efficient Hydrogen Generation System
,”
J. Power Sources
,
159
(
2
), pp.
855
860
. 10.1016/j.jpowsour.2005.12.033
48.
Xu
,
Q.
, and
Chandra
,
M.
,
2006
, “
Catalytic Activities of Non-Noble Metals for Hydrogen Generation From Aqueous Ammonia–Borane at Room Temperature
,”
J. Power Sources
,
163
(
1
), pp.
364
370
. 10.1016/j.jpowsour.2006.09.043
49.
Wang
,
C. L.
,
Tuninetti
,
J.
,
Wang
,
Z.
,
Zhang
,
C.
, and
Ciganda
,
R.
,
2017
, “
Hydrolysis of Ammonia-Borane Over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release
,”
J. Am. Chem. Soc.
,
139
(
33
), pp.
11610
11615
. 10.1021/jacs.7b06859
50.
Li
,
Y.
,
Hu
,
M. W.
,
Wang
,
J. S.
, and
Wang
,
W. H.
,
2019
, “
DFT Studies on the Ru-Catalyzed Hydrolysis of Ammonia Borane
,”
J. Organometallic Chem.
,
899
, p.
120913
. 10.1016/j.jorganchem.2019.120913
51.
Chen
,
W. Y.
,
Ji
,
J.
,
Feng
,
X.
,
Duan
,
X. Z.
,
Qian
,
G.
,
Li
,
P.
,
Zhou
,
X. G.
,
Chen
,
D.
, and
Yuan
,
W. K.
,
2014
, “
Mechanistic Insight Into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane
,”
J. Am. Chem. Soc.
,
136
(
48
), pp.
16736
16739
. 10.1021/ja509778y
52.
Chen
,
W. Y.
,
Li
,
D. L.
,
Wang
,
Z. J.
,
Qian
,
G.
,
Sui
,
Z. J.
, and
Duan
,
X. Z.
,
2017
, “
Reaction Mechanism and Kinetics for Hydrolytic Dehydrogenation of Ammonia Borane on a Pt/CNT Catalyst
,”
AIChE J.
,
63
(
1
), pp.
60
65
. 10.1002/aic.15389
53.
Chen
,
W. Y.
,
Li
,
D. L.
,
Peng
,
C.
,
Qian
,
G.
,
Duan
,
X. Z.
,
Chen
,
D.
, and
Zhou
,
X. G.
,
2017
, “
Mechanistic and Kinetic Insights Into the Pt-Ru Synergy During Hydrogen Generation From Ammonia Borane Over PtRu/CNT Nanocatalysts
,”
J. Catal.
,
356
, pp.
186
196
. 10.1016/j.jcat.2017.10.016
54.
Yang
,
X. J.
,
Cheng
,
F. Y.
,
Tao
,
Z. L.
, and
Chen
,
J.
,
2011
, “
Hydrolytic Dehydrogenation of Ammonia Borane Catalyzed by Carbon Supported Co Core-Pt Shell Nanoparticles
,”
J. Power Source
,
196
(
5
), pp.
2785
2789
. 10.1016/j.jpowsour.2010.09.079
55.
Alpaydın
,
C. Y.
,
Gulbay
,
S. K.
, and
Colpan
,
C.
,
2020
, “
A Review on the Catalysts Used for Hydrogen Production From Ammonia Borane
,”
Int. J. Hydrogen Energy
,
45
(
5
), pp.
3414
3434
. 10.1016/j.ijhydene.2019.02.181
56.
Du
,
J.
,
Qi
,
J.
,
Wang
,
D.
, and
Tang
,
Z. Y.
,
2012
, “
Facile Synthesis of Au@TiO2 Core–Shell Hollow Spheres for Dye-Sensitized Solar Cells With Remarkably Improved Efficiency
,”
Energy Environ. Sci.
,
5
(
5
), p.
6914
. 10.1039/c2ee21264a
57.
Fan
,
Y.
,
Li
,
X.
,
He
,
X.
,
Zeng
,
C.
,
Fan
,
G.
,
Liu
,
Q.
, and
Tang
,
D.
,
2014
, “
Effective Hydrolysis of Ammonia Borane Catalyzed by Ruthenium Nanoparticles Immobilized on Graphic Carbon Nitride
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
19982
19989
. 10.1016/j.ijhydene.2014.10.012
58.
Yao
,
Q.
,
Shi
,
W.
,
Feng
,
G.
,
Lu
,
Z. H.
,
Zhang
,
X.
, and
Tao
,
D.
,
2014
, “
Ultrafine Ru Nanoparticles Embedded in SiO2 Nanospheres: Highly Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane
,”
J. Power Sources
,
257
, pp.
293
299
. 10.1016/j.jpowsour.2014.01.122
59.
Du
,
C.
,
Ao
,
Q.
,
Cao
,
N.
,
Yang
,
L.
,
Luo
,
W.
, and
Cheng
,
G.
,
2015
, “
Facile Synthesis of Monodisperse Ruthenium Nanoparticles Supported on Graphene for Hydrogen Generation From Hydrolysis of Ammonia Borane
,”
Int. J. Hydrogen Energy
,
40
(
18
), pp.
6180
6187
. 10.1016/j.ijhydene.2015.03.070
60.
Chandra
,
M.
, and
Xu
,
Q.
,
2007
, “
Room Temperature Hydrogen Generation From Aqueous Ammonia-Borane Using Noble Metal Nanoclusters as Highly Active Catalysts
,”
J. Power Sources
,
168
(
1
), pp.
135
142
. 10.1016/j.jpowsour.2007.03.015
61.
Khalily
,
M. A.
,
Eren
,
H.
,
Akbayrak
,
S.
,
Susapto
,
H. H.
,
Biyikli
,
N.
,
Ozkar
,
S.
, and
Guler
,
M. O.
,
2016
, “
Facile Synthesis of Three-Dimensional Pt-TiO2 Nano-Networks: a Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia Borane
,”
Angew Chem. Int.
,
55
(
40
), pp.
12257
12261
. 10.1002/anie.201605577
62.
Tonbul
,
Y.
,
Akbayrak
,
S.
, and
Özkar
,
S.
,
2016
, “
Palladium(0) Nanoparticles Supported on Ceria: Highly Active and Reusable Catalyst in Hydrogen Generation From the Hydrolysis of Ammonia Borane
,”
Int. J. Hydrogen Energy
,
41
(
26
), pp.
11154
11162
. 10.1016/j.ijhydene.2016.04.058
63.
Manna
,
J.
,
Akbayrak
,
S.
, and
Özkar
,
S.
,
2016
, “
Palladium(0) Nanoparticles Supported on Polydopamine Coated Fe3O4 as Magnetically Isolable, Highly Active and Reusable Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane
,”
RSC Adv.
,
6
(
104
), pp.
102035
102042
. 10.1039/C6RA23007E
64.
Yao
,
Q.
,
Lu
,
Z. H.
,
Zhang
,
Z.
,
Chen
,
X.
, and
Lan
,
Y.
,
2014
, “
One-Pot Synthesis of Core-Shell Cu@SiO2 Nanospheres and Their Catalysis for Hydrolytic Dehydrogenation of Ammonia Borane and Hydrazine Borane
,”
Sci. Rep.
,
4
(
1
), p.
7597
. 10.1038/srep07597
65.
Hu
,
J.
,
Chen
,
Z.
,
Li
,
M.
,
Zhou
,
X.
, and
Lu
,
H.
,
2014
, “
Amine-Capped Co Nanoparticles for Highly Efficient Dehydrogenation of Ammonia Borane
,”
ACS Appl. Mater. Inter.
,
6
(
15
), pp.
13191
13200
. 10.1021/am503037k
66.
Wang
,
H.
,
Zhao
,
Y.
,
Cheng
,
F.
,
Tao
,
Z.
, and
Chen
,
J.
,
2016
, “
Cobalt Nanoparticles Embedded in Porous N-Doped Carbon as Longlife Catalysts for Hydrolysis of Ammonia Borane
,”
Catal. Sci. Technol.
,
6
(
10
), pp.
3443
3448
. 10.1039/C5CY01756D
67.
Zahmakiran
,
M.
,
Ayvali
,
T.
,
Akbayrak
,
S.
,
Çalışkan
,
S.
,
Çelik
,
D.
, and
€Ozkar
,
S.
,
2011
, “
Zeolite Framework Stabilized Nickel(0) Nanoparticles: Active and Long-Lived Catalyst for Hydrogen Generation From the Hydrolysis of Ammonia-Borane and Sodium Borohydride
,”
Catal. Today
,
170
(
1
), pp.
76
84
. 10.1016/j.cattod.2010.09.022
68.
Zhao
,
G.
,
Zhong
,
J.
,
Wang
,
J.
,
Sham
,
T. K.
,
Sun
,
X.
, and
Lee
,
S. T.
,
2015
, “
Revealing the Synergetic Effects in Ni Nanoparticle-Carbon Nanotube Hybrids by Scanning Transmission X-ray Microscopy and Their Application in the Hydrolysis of Ammonia Borane
,”
Nanoscale
,
7
(
21
), pp.
9715
9722
. 10.1039/C5NR01168J
69.
Shen
,
J.
,
Yang
,
L.
,
Hu
,
K.
,
Luo
,
W.
, and
Cheng
,
G.
,
2015
, “
Rh Nanoparticles Supported on Graphene as Efficient Catalyst for Hydrolytic Dehydrogenation of Amine Boranes for Chemical Hydrogenstorage
,”
Int. J. Hydrogen Energy
,
40
(
2
), pp.
1062
1070
. 10.1016/j.ijhydene.2014.11.031
70.
Yao
,
Q. L.
,
Lu
,
Z. H.
,
Jia
,
Y.
,
Chen
,
X.
, and
Liu
,
X.
,
2015
, “
In Situ Facile Synthesis of Rh Nanoparticles Supported on Carbon Nanotubes as Highly Active Catalysts for H2 Generation From NH3BH3 Hydrolysis
,”
Int. J. Hydrogen Energy
,
40
(
5
), pp.
2207
2215
. 10.1016/j.ijhydene.2014.12.047
71.
Yao
,
Q. L.
,
Lu
,
Z. H.
,
Huang
,
W.
,
Chen
,
X. S.
, and
Zhu
,
J.
,
2016
, “
Highly Pt-Like Activity of Ni-Mo/Graphene Catalyst for Hydrogen Evolution From Hydrolysis of Ammonia Borane
,”
J. Mater. Chem. A
,
4
(
22
), pp.
8579
8583
. 10.1039/C6TA02004F
72.
Wang
,
H. Y.
,
Gao
,
C. Y.
,
Li
,
R.
,
Peng
,
Z. K.
,
Yang
,
J. H.
,
Gao
,
J.
,
Yang
,
Y.
,
Li
,
S.
,
Li
,
B.
, and
Liu
,
Z.
,
2019
, “
Ruthenium-Cobalt Nanoalloy Embedded Within Hollow Carbon Spheres as a Bifunctionally Robust Catalyst for Hydrogen Generation From Water Splitting and Ammonia Borane Hydrolysis
,”
ACS Sustainable Chem. Eng.
,
7
(
23
), pp.
18744
18752
. 10.1021/acssuschemeng.9b02126
73.
Pant
,
B.
,
Pant
,
H. R.
,
Park
,
M.
,
Liu
,
Y. N.
,
Choi
,
J. W.
,
Barakat
,
N. A.
, and
Kim
,
H. Y.
,
2014
, “
Electrospun CdS-TiO2 Doped Carbon Nanofibers for Visible-Light-Induced Photocatalytic Hydrolysis of Ammonia Borane
,”
Catal. Commun.
,
50
, pp.
63
68
. 10.1016/j.catcom.2014.03.002
74.
Lai
,
S. W.
,
Park
,
J. W.
,
Yoo
,
S. H.
,
Ha
,
J. M.
,
Song
,
E. H.
, and
Cho
,
S. O.
,
2016
, “
Surface Synergism of Pd/H2Ti3O7 Composite Nanowires for Catalytic and Photocatalytic Hydrogen Production From Ammonia Borane
,”
Int. J. Hydrogen Energy
,
41
(
5
), pp.
3428
3435
. 10.1016/j.ijhydene.2015.12.058
75.
Song
,
J.
,
Gu
,
X. J.
,
Fan
,
J. N.
, and
Zhang
,
H.
,
2018
, “
Remarkably Boosting Catalytic H2 Evolution From Ammonia Borane Through the Visible-Light-Driven Synergistic Electron Effect of Non-Plasmonic Noblemetal-Free Nanoparticles and Photoactive Metal-Organic Frameworks
,”
Appl. Catal. B Environ.
,
225
, pp.
424
432
. 10.1016/j.apcatb.2017.12.024
76.
Li
,
H. J.
,
Yan
,
Y. F.
,
Feng
,
S.
, and
Chen
,
Y. R.
,
2019
, “
Novel Method of High-Efficient Synergistic Catalyze Ammonia Borane Hydrolysis to Hydrogen Evolution and Catalytic Mechanism Investigation
,”
Fuel
,
255
(
9
), p.
115771
. 10.1016/j.fuel.2019.115771
77.
Li
,
H. J.
,
Yan
,
Y. F.
,
Feng
,
S.
, and
Chen
,
Y. R.
,
2019
, “
Transition Metal Tuned Semiconductor Photocatalyst CuCo/Beta-SiC Catalyze Hydrolysis of Ammonia Borane to Hydrogen Evolution
,”
Int. J. Hydrogen Energy
,
44
(
16
), pp.
8307
8314
. 10.1016/j.ijhydene.2019.02.034
78.
Luo
,
W. X.
,
Cheng
,
W.
,
Hu
,
M.
,
Wang
,
Q.
,
Cheng
,
X.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Gao
,
D. J.
,
Bi
,
J.
, and
Fan
,
G.
,
2019
, “
Ultrahigh Catalytic Activity of l-Proline-Functionalized Rh Nanoparticles for Methanolysis of Ammonia Borane
,”
ChemSusChem
,
12
(
2
), pp.
535
541
. 10.1002/cssc.201802157
79.
Inoue
,
H.
,
Yamazaki
,
T.
,
Kitamura
,
T.
,
Shimada
,
M.
,
Chiku
,
M.
, and
Higuchi
,
E.
,
2012
, “
Electrochemical Hydrogen Production System From Ammonia Borane in Methanol Solution
,”
Electrochim. Acta
,
82
, pp.
392
396
. 10.1016/j.electacta.2012.05.091
80.
Özhava
,
D.
,
Kılıçaslan
,
N. Z.
, and
Özkar
,
S.
,
2015
, “
PVP-stabilized Nickel(0) Nanoparticles as Catalyst in Hydrogeneration From the Methanolysis of Hydrazine Boraneor Ammonia Borane
,”
Appl. Catal. B: Environ.
,
162
, pp.
573
582
. 10.1016/j.apcatb.2014.07.033
81.
Chen
,
H.
,
Yu
,
Z. J.
,
Xu
,
D. D.
,
Li
,
Y.
,
Wang
,
M. M.
,
Xia
,
L. M.
, and
Luo
,
S. P.
,
2019
, “
In-Situ Formed Amorphous Co Nanoparticles for Efficiently Catalytic Hydrogen Production From the Methanolysis of Ammonia Borane
,”
Chin. J. Inorg. Chem.
,
35
, pp.
141
148
.
82.
Chen
,
Q. Q.
,
Li
,
Q.
,
Hou
,
C. C.
, and
Wang
,
C. J.
,
2019
, “
Enhancing Electrostatic Interactions to Activate Polar Molecules: Ammonia Borane Methanolysis on a Cu/Co(OH)2 Nanohybrid
,”
Catal. Sci. Technol.
,
9
(
11
), pp.
2828
2835
. 10.1039/C9CY00584F
83.
Cui
,
L.
,
Cao
,
X. Y.
,
Sun
,
X. P.
,
Yang
,
W. R.
, and
Liu
,
J.
,
2018
, “
A Bunch-Like Copper Oxide Nanowire Array as an Efficient, Durable, and Economical Catalyst for the Methanolysis of Ammonia Borane
,”
ChemCatChem
,
10
(
4
), pp.
710
715
. 10.1002/cctc.201701317
84.
Özhava
,
D.
, and
Özkar
,
S.
,
2018
, “
Nanoceria Supported Rhodium(0) Nanoparticles as Catalyst for Hydrogen Generation From Methanolysis of Ammonia Borane
,”
Appl. Catal. B: Environ.
,
237
, pp.
1012
1020
. 10.1016/j.apcatb.2018.06.064
85.
Yu
,
C.
,
Fu
,
J. J.
,
Muzzio
,
M.
,
Shen
,
T. L.
, and
Su
,
D.
,
2017
, “
CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds
,”
Chem. Mater.
,
29
(
3
), pp.
1413
1418
. 10.1021/acs.chemmater.6b05364
86.
Sun
,
D. H.
,
Li
,
P. Y.
,
Yang
,
B.
,
Xu
,
Y.
, and
Huang
,
J. L.
,
2016
, “
Monodisperse AgPd Alloy Nanoparticles as a Highly Active Catalyst Towards the Methanolysis of Ammonia Borane for Hydrogen Generation
,”
RSC Adv.
,
6
(
107
), pp.
105940
105947
. 10.1039/C6RA21691A
87.
Peng
,
S. G.
,
Liu
,
J. C.
,
Zhang
,
J.
, and
Wang
,
F. Y.
,
2015
, “
An Improved Preparation of Graphene Supported Ultrafine Ruthenium (0) NPs: Very Active and Durable Catalysts for H2 Generation From Methanolysis of Ammonia Borane
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
10856
10866
. 10.1016/j.ijhydene.2015.06.113
88.
Davis
,
B. L.
,
Dixon
,
D. A.
,
Garner
,
E. B.
, and
Gordon
,
J. C.
,
2009
, “
Efficient Regeneration of Partially Spent Ammonia Borane Fuel
,”
Angew. Chem. Int. Ed.
,
48
(
37
), pp.
6812
6816
. 10.1002/anie.200900680
89.
Hua
,
T. Q.
, and
Ahluwalia
,
R. K.
,
2012
, “
Off-Board Regeneration of Ammonia Borane for Use as a Hydrogen Carrier for Automotive Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14382
14392
. 10.1016/j.ijhydene.2012.07.013
90.
Reller
,
C.
, and
Mertens
,
F. L.
,
2012
, “
A Self-Contained Regeneration Scheme for Spent Ammonia Borane Based on the Catalytic Hydrodechlorination of BCl3
,”
Angew. Chem. Int. Ed.
,
51
(
47
), pp.
11731
11735
. 10.1002/anie.201201134
91.
Sutton
,
A. D.
,
Burrell
,
A. K.
,
Dixon
,
D. A.
,
Garner III
,
E. B.
,
Gordon
,
J. C.
, and
Nakagawa
,
T.
,
2011
, “
Regeneration of Ammonia Borane Spent Fuel by Direct Reaction With Hydrazine and Liquid Ammonia
,”
Science
,
331
(
6023
), pp.
1426
1429
. 10.1126/science.1199003
92.
Hausdorf
,
S.
,
Baitalow
,
F.
,
Wolf
,
G.
, and
Mertens
,
F. L.
,
2008
, “
A Procedure for the Regeneration of Ammonia Borane From BNH-Waste Products
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
608
614
. 10.1016/j.ijhydene.2007.10.035
93.
Gagare
,
P.
,
Basu
,
S.
,
Brockman
,
A.
,
Diwan
,
M.
,
Kukhun
,
A. A.
,
Hwang
,
H. T.
,
Zheng
,
Y.
,
Ramachran
,
P. V.
,
Varma
,
A.
, and
Gore
,
J.
,
2009
,
Purdue Hydrogen Systems Laboratory, Part II: Hydrogen Storage, U.S. DOE Annual Report
.
94.
Tan
,
Y. B.
, and
Yu
,
X. B.
,
2013
, “
Chemical Regeneration of Hydrogen Storage Materials
,”
RSC Adv.
,
3
(
46
), pp.
23879
23894
. 10.1039/c3ra44103b
95.
Zheng
,
N. F.
,
Fan
,
J.
, and
Stucky
,
G. D.
,
2006
, “
One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals
,”
J. Am. Chem. Soc.
,
128
(
20
), pp.
6550
6551
. 10.1021/ja0604717
96.
Kalidindi
,
S. B.
,
Sanyal
,
U.
, and
Jagirdar
,
R. B.
,
2011
, “
Chemical Synthesis of Metal Nanoparticles Using Ammonia Boranes
,”
ChemSusChem
,
4
, pp.
317
324
. 10.1002/cssc.201000318
97.
Kalidindi
,
S. B.
,
Sanyal
,
U.
, and
Jagirdar
,
B. R.
,
2010
, “
Metal Nanoparticles via the Atom-Economy Green Approach
,”
Inorg. Chem.
,
49
(
9
), pp.
3965
3967
. 10.1021/ic100431k
98.
Chen
,
X.
,
Ma
,
D. D.
,
Chen
,
B.
,
Zhang
,
K. X.
,
Zou
,
R. Q.
, and
Wu
,
X. T.
,
2020
, “
Metal-Organic Framework-Derived Mesoporous Carbon Nanoframes Embedded With Atomically Dispersed Fe-Nx Active Sites for Efficient Bifunctional Oxygen and Carbon Dioxide Electroreduction
,”
Appl. Catal. B Environ.
,
267
, p.
118720
. 10.1016/j.apcatb.2020.118720
99.
Zhang
,
J.
,
Duan
,
Y. H.
,
Zhu
,
Y. M.
,
Wang
,
Y.
,
Yao
,
H. R.
, and
Mi
,
G.
,
2017
, “
Evenly Dispersed Microspherical Amorphous Alloy CoxB1-x: Robust and Magnetically Recyclable Catalyst for Alcoholyzing Ammonia Borane to Release H2
,”
Mater. Chem. Phys.
,
201
, pp.
297
301
. 10.1016/j.matchemphys.2017.08.040
100.
José
,
B.
,
Lorena
,
ÁC
,
Minerva
,
G. B.
,
Janet
,
L. G.
, and
Luis
,
G. A.
,
2020
, “
Synthesis of a Small-Size Metal Oxide Mixture Based on MoOx and NiO With Oxygen Vacancies as Bifunctional Electrocatalyst for Oxygen Reactions
,”
Appl. Surf. Sci.
,
509
, p.
1448982
. 10.1016/j.apsusc.2019.144898
101.
Lepoivre
,
F.
,
Larcher
,
D.
, and
Tarascon
,
J. M.
,
2016
, “
Electrochemical Activation of Silica for Enhanced Performances of Si-Based Electrodes
,”
J. Electrochem. Soc.
,
163
(
13
), pp.
A2791
A2796
. 10.1149/2.1221613jes
102.
Obrovac
,
M. N.
, and
Chevrier
,
V. L.
,
2014
, “
Alloy Negative Electrodes for Li Ion Batteries
,”
Chem. Rev.
,
114
(
23
), pp.
11444
11502
. 10.1021/cr500207g
103.
Nitta
,
N.
,
Wu
,
F. X.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
. 10.1016/j.mattod.2014.10.040
104.
Rodriguez
,
J. R.
,
Hamann
,
H. J.
,
Mitchell
,
G. M.
,
Ortalan
,
V.
,
Pol
,
V. G.
, and
Ramachandran
,
P. V.
,
2019
, “
Three-Dimensional Antimony Nanochains for Lithium-Ion Storage
,”
ACS Appl. Nano Mater.
,
2
(
9
), pp.
5351
5355
. 10.1021/acsanm.9b01316
105.
Yao
,
C. F.
,
Yang
,
H. X.
,
Zhuang
,
L.
,
Ai
,
X. P.
,
Cao
,
Y. L.
, and
Lu
,
J. T.
,
2007
, “
A Preliminary Study of Direct Borazane Fuel Cell
,”
J. Power Sources
,
165
(
1
), pp.
125
127
. 10.1016/j.jpowsour.2006.11.050
106.
Zhang
,
X. B.
,
Han
,
S.
,
Yan
,
J. M.
,
Chandra
,
M.
,
Shioyama
,
H.
,
Yasuda
,
K.
,
Kuriyama
,
N.
,
Kobayashi
,
T.
, and
Xu
,
Q.
,
2007
, “
A New Fuel Cell Using Aqueous Ammonia-Borane as the Fuel
,”
J. Power Sources
,
168
, pp.
67
171
. 10.1016/j.jpowsour.2007.03.009
107.
Zhang
,
X. B.
,
Yan
,
J. M.
,
Han
,
S.
,
Shioyama
,
H.
,
Yasuda
,
K.
,
Kuriyama
,
N.
, and
Xu
,
Q.
,
2008
, “
A High Performance Anion Exchange Membrane-Type Ammonia Borane Fuel Cell
,”
J. Power Sources
,
182
(
2
), pp.
515
519
. 10.1016/j.jpowsour.2008.04.032
You do not currently have access to this content.