Abstract

Algae-based aviation biofuel shows the potential to reduce soot emission in flight. A comparison study of soot precursor and aggregate property between algae-based biofuel and aviation kerosene RP-3 in laminar flame was conducted to investigate the reason of biofuel’s less soot formation. The soot precursors were determined by the fringe lengths of soot particles. At a typical dimensionless height DH = 0.50 of both flames, the geometric mean fringe lengths of biofuel and RP-3 are measured to be 0.67 and 0.73 nm, respectively, approximating to the size of five-ringed (A5) and seven-ringed (A7) poly-aromatic hydrocarbon, respectively. An A5 growth mechanism was then added to biofuel surrogate mechanisms for soot formation simulation. Since the carbon number component of biofuel is wide and difficult for comprehensive mechanism development, two surrogate mechanisms were developed. One is based on the C8–C16 n-alkane that covers biofuel’s main components, and the other one is based on biofuel’s average carbon number to simplify the mechanism. Meanwhile, an A7 growth mechanism was added to a popular RP-3 mechanism. The soot formation simulation with the combination mechanisms for both fuels provides a better agreement with the measured primary particle diameter and suggests that the reason for less soot production by biofuel is its less soot precursor production that weakens soot nucleation and growth. Lastly, the soot fractal dimension of biofuel is smaller than that of RP-3, indicating that biofuel has a looser soot aggregate.

References

1.
International Air Transport Association
,
2015
, “
IATA 2015 Report on Alternative Fuels
,”
Montreal/Geneva
.
2.
Balakrishnan
,
A.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2016
, “
Combustion Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Jet a Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012202
. 10.1115/1.4031966
3.
Yang
,
X.
,
Guo
,
F.
,
Xue
,
S.
, and
Wang
,
X.
,
2016
, “
Carbon Distribution of Algae-Based Alternative Aviation Fuel Obtained by Different Pathways
,”
Renew. Sustain. Energy Rev.
,
54
, pp.
1129
1147
. 10.1016/j.rser.2015.10.045
4.
Xu
,
Y. H.
,
Brunson
,
J. D.
,
Avedisian
,
C. T.
,
Shen
,
Y. R.
,
Keresztes
,
I.
,
Condo
,
A. M.
, and
Phillips
,
D.
,
2019
, “
Burning of Algae-Derived Biofuel Droplets and Their Mixtures With Jet Fuel
,”
Energy Fuels
,
34
(
1
), pp.
929
935
. 10.1021/acs.energyfuels.9b03238
5.
Verma
,
D.
,
Kumar
,
R.
,
Rana
,
B. S.
, and
Sinha
,
A. K.
,
2011
, “
Aviation Fuel Production From Lipids by a Single-Step Route Using Hierarchical Mesoporous Zeolites
,”
Energy Environ. Sci.
,
4
(
5
), pp.
1667
1671
. 10.1039/c0ee00744g
6.
Zhao
,
B. W.
,
Shi
,
Z.
, and
Yang
,
X. Y.
,
2017
, “
Upgrading Algae Biocrude for a Low-Nitrogen-Containing Biofuel: Compositions, Intermediates, and Reaction Routes
,”
Ind. Eng. Chem. Res.
,
56
(
22
), pp.
6378
6390
. 10.1021/acs.iecr.7b01405
7.
Valco
,
D. J.
,
Tess
,
M. J.
,
Temme
,
J. E.
,
Kurman
,
M. S.
,
Oldani
,
A.
,
Kweon
,
C.-B. M.
,
Oehlschlaeger
,
M. A.
, and
Lee
,
T.
,
2017
, “
Ignition Characterization of F-76 and Algae-Derived HRD-76 at Elevated Temperatures and Pressures
,”
Combust. Flame
,
181
, pp.
157
163
. 10.1016/j.combustflame.2017.03.018
8.
Xu
,
Y. H.
,
Keresztes
,
I.
,
Condo
,
A. M.
,
Phillips
,
D.
,
Pepiot
,
P.
, and
Avedisian
,
C. T.
,
2016
, “
Droplet Combustion Characteristics of Algae-Derived Renewable Diesel, Conventional #2 Diesel, and Their Mixtures
,”
Fuel
,
167
, pp.
295
305
. 10.1016/j.fuel.2015.11.036
9.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
,
2009
, “
A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane
,”
Combust. Flame
,
156
(
1
), pp.
181
199
. 10.1016/j.combustflame.2008.07.014
10.
Sarathy
,
S. M.
,
Westbrook
,
C. K.
,
Mehl
,
M.
,
Pitz
,
W. J.
,
Togbe
,
C.
,
Dagaut
,
P.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Niemann
,
U.
,
Seshadri
,
K.
,
Veloo
,
P. S.
,
Ji
,
C.
,
Egolfopoulos
,
F. N.
, and
Lu
,
T.
,
2011
, “
Comprehensive Chemical Kinetic Modeling of the Oxidation of 2-Methylalkanes From C7 to C20
,”
Combust. Flame
,
158
(
12
), pp.
2338
2357
. 10.1016/j.combustflame.2011.05.007
11.
Haynes
,
B. S.
, and
Wagner
,
H. G.
,
1981
, “
Soot Formation
,”
Prog. Energy Combust. Sci.
,
7
(
4
), pp.
229
273
. 10.1016/0360-1285(81)90001-0
12.
Frenklach
,
M.
, and
Wang
,
H.
,
1991
, “
Detailed Modeling of Soot Particle Nucleation and Growth
,”
Sympos. Combust.
,
23
(
1
), pp.
1559
1566
. 10.1016/S0082-0784(06)80426-1
13.
Frenklach
,
M.
,
2002
, “
Reaction Mechanism of Soot Formation in Flames
,”
Phys. Chem. Chem. Phys.
,
4
(
11
), pp.
2028
2037
. 10.1039/b110045a
14.
Sabbah
,
H.
,
Biennier
,
L.
,
Klippenstein
,
S. J.
,
Sims
,
I. R.
, and
Rowe
,
B. R.
,
2012
, “
Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization
,”
J. Phys. Chem. Lett.
,
1
(
19
), pp.
1857
1858
. 10.1021/jz101033t
15.
Saffaripour
,
M.
,
Zabeti
,
P.
,
Dworkin
,
S. B.
,
Zhang
,
Q.
,
Guo
,
H.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Thomson
,
M. J.
,
2011
, “
A Numerical and Experimental Study of a Laminar Sooting Coflow Jet-A1 Diffusion Flame
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
601
608
. 10.1016/j.proci.2010.06.068
16.
Dobbins
,
R. A.
,
Fletcher
,
R. A.
, and
Chang
,
H. C.
,
1998
, “
The Evolution of Soot Precursor Particles in a Diffusion Flame
,”
Combust. Flame
,
115
(
3
), pp.
285
298
. 10.1016/S0010-2180(98)00010-8
17.
Teini
,
P. D.
,
Karwat
,
D. M. A.
, and
Atreya
,
A.
,
2011
, “
Observations of Nascent Soot: Molecular Deposition and Particle Morphology
,”
Combust. Flame
,
158
(
10
), pp.
2045
2055
. 10.1016/j.combustflame.2011.03.005
18.
Saffaripour
,
M.
,
Veshkini
,
A.
,
Kholghy
,
M.
, and
Thomson
,
M. J.
,
2014
, “
Experimental Investigation and Detailed Modeling of Soot Aggregate Formation and Size Distribution in Laminar Coflow Diffusion Flames of Jet A-1, A Synthetic Kerosene, and n-Decane
,”
Combust. Flame
,
161
(
3
), pp.
848
863
. 10.1016/j.combustflame.2013.10.016
19.
Wang
,
Y.
,
Raj
,
A.
, and
Chung
,
S. H.
,
2013
, “
A PAH Growth Mechanism and Synergistic Effect on PAH Formation in Counterflow Diffusion Flames
,”
Combust. Flame
,
160
(
9
), pp.
1667
1676
. 10.1016/j.combustflame.2013.03.013
20.
Alfè
,
M.
,
Apicella
,
B.
,
Barbella
,
R.
,
Rouzaud
,
J. N.
,
Tregrossi
,
A.
, and
Ciajolo
,
A.
,
2009
, “
Structure–Property Relationship in Nanostructures of Young and Mature Soot in Premixed Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
697
704
. 10.1016/j.proci.2008.06.193
21.
Yazicioglu
,
A. G.
,
Megaridis
,
C. M.
,
Campbell
,
A.
,
Lee
,
K.-O.
, and
Choi
,
M. Y.
,
2001
, “
Measurement of Fractal Properties of Soot Agglomerates in Laminar Coflow Diffusion Flames Using Thermophoretic Sampling in Conjunction With Transmission Electron Microscopy and Image Processing
,”
Combust. Sci. Technol.
,
171
(
1
), pp.
71
87
. 10.1080/00102200108907859
22.
Li
,
Z. Q.
,
Qiu
,
L.
,
Cheng
,
X. B.
,
Li
,
Y.
, and
Wu
,
H.
,
2018
, “
The Evolution of Soot Morphology and Nanostructure in Laminar Diffusion Flame of Surrogate Fuels for Diesel
,”
Fuel
,
211
, pp.
517
528
. 10.1016/j.fuel.2017.09.036
23.
Lapuerta
,
M.
,
Barba
,
J.
,
Sediako
,
A. D.
,
Kholghy
,
M. R.
, and
Thomson
,
M. J.
,
2017
, “
Morphological Analysis of Soot Agglomerates From Biodiesel Surrogates in a Coflow Burner
,”
J. Aerosol Sci.
,
111
, pp.
65
74
. 10.1016/j.jaerosci.2017.06.004
24.
He
,
J. N.
,
Xian
,
L. Y.
,
Li
,
P.
,
Zhang
,
C. H.
,
Wang
,
J. B.
, and
Li
,
X. Y.
,
2017
, “
Experimental Study of the Soot Formation of RP-3 Behind Reflected Shock Waves
,”
Fuel
,
200
, pp.
47
53
. 10.1016/j.fuel.2017.03.030
25.
Liu
,
W.
,
Liang
,
X.
,
Lin
,
B.
,
Lin
,
H.
,
Huang
,
Z.
, and
Han
,
D.
,
2020
, “
A Comparative Study on Soot Particle Size Distributions in Premixed Flames of RP-3 Jet Fuel and Its Surrogates
,”
Fuel
,
259
, p.
116222
. 10.1016/j.fuel.2019.116222
26.
Abdalla
,
A. O. G.
,
Ying
,
Y.
,
Jiang
,
B.
,
He
,
X.
, and
Liu
,
D.
,
2020
, “
Comparative Study on Characteristics of Soot From n-Decane and RP-3 Kerosene Normal/Inverse Diffusion Flames
,”
J. Energy Inst.
,
93
(
1
), pp.
62
75
. 10.1016/j.joei.2019.04.008
27.
Yang
,
Y. Y.
, and
Gan
,
Z. W.
,
2019
, “
Soot Morphological Differences Between Laminar Diffusion Flames of Traditional Aviation Kerosene and Bio-Kerosene
,”
Proceedings of Global Power and Propulsion Society
,
Beijing, China
,
Sept. 16–18
, pp.
1
9
.
28.
Dong
,
Z.
,
Wei-Ming
,
Y.
, and
Bei-Jing
,
Z.
,
2015
, “
RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model
,”
Acta Phys. Chim. Sin.
,
31
(
4
), pp.
636
642
. 10.3866/PKU.WHXB201501231
29.
Mao
,
Y. B.
,
Yu
,
L.
,
Wu
,
Z. Y.
,
Tao
,
W. C.
,
Wang
,
S. X.
,
Ruan
,
C.
,
Zhu
,
L.
, and
Lu
,
X. C.
,
2019
, “
Experimental and Kinetic Modeling Study of Ignition Characteristics of RP-3 Kerosene Over Low-to-High Temperature Ranges in a Heated Rapid Compression Machine and a Heated Shock Tube
,”
Combust. Flame
,
203
, pp.
157
169
. 10.1016/j.combustflame.2019.02.015
30.
Zhang
,
C.
,
Li
,
B.
,
Rao
,
F.
,
Li
,
P.
, and
Li
,
X.
,
2015
, “
A Shock Tube Study of the Autoignition Characteristics of RP-3 Jet Fuel
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3151
3158
. 10.1016/j.proci.2014.05.017
31.
Jia-Qi
,
X.
,
Jun-Jiang
,
G.
,
Ai-Ke
,
L.
,
Jian-Li
,
W.
,
Ning-Xin
,
T.
, and
Xiang-Yuan
,
L.
,
2015
, “
Construction of Autoignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation
,”
Acta Phys. Chim. Sin.
,
31
(
4
), pp.
643
652
. 10.3866/PKU.WHXB201503022
32.
Shi
,
Z.
,
Zhao
,
B. W.
,
Tang
,
S.
, and
Yang
,
X. Y.
,
2018
, “
Hydrotreating Lipids for Aviation Biofuels Derived From Extraction of Wet and Dry Algae
,”
J. Cleaner Prod.
,
204
, pp.
906
915
. 10.1016/j.jclepro.2018.08.351
33.
Gan
,
Z. W.
,
Ren
,
H. T.
, and
Yang
,
X. Y.
,
2017
, “
Effect of Linear Alkane c17, c18 on Spray Characteristics of Kerosene in Hollow Cone Pressure Swirl Spray
,”
Atom. Sprays
,
27
(
6
), pp.
511
530
. 10.1615/AtomizSpr.2017017862
34.
Kholghy
,
M. R.
,
Afarin
,
Y.
,
Sediako
,
A. D.
,
Barba
,
J.
,
Lapuerta
,
M.
,
Chu
,
C.
,
Weingarten
,
J.
,
Borshanpour
,
B.
,
Chernov
,
V.
, and
Thomson
,
M. J.
,
2017
, “
Comparison of Multiple Diagnostic Techniques to Study Soot Formation and Morphology in a Diffusion Flame
,”
Combust. Flame
,
176
, pp.
567
583
. 10.1016/j.combustflame.2016.11.012
35.
Slavinskaya
,
N. A.
,
Riedel
,
U.
,
Dworkin
,
S. B.
, and
Thomson
,
M. J.
,
2012
, “
Detailed Numerical Modeling of PAH Formation and Growth in Non-Premixed Ethylene and Ethane Flames
,”
Combust. Flame
,
159
(
3
), pp.
979
995
. 10.1016/j.combustflame.2011.10.005
36.
Niemeyer
,
K. E.
,
Sung
,
C.-J.
, and
Raju
,
M. P.
,
2010
, “
Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph With Error Propagation and Sensitivity Analysis
,”
Combust. Flame
,
157
(
9
), pp.
1760
1770
. 10.1016/j.combustflame.2009.12.022
37.
Pepiotdesjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
. 10.1016/j.combustflame.2007.10.020
38.
ANSYS, Inc.
,
2018
, “
Ansys Chemkin-Pro 19.0
,”
Canonsburg, PA
.
39.
Zhang
,
T. F.
, and
Thomson
,
M. J.
,
2018
, “
A Numerical Study of the Effects of n-Propylbenzene Addition to n-Dodecane on Soot Formation in a Laminar Coflow Diffusion Flame
,”
Combust. Flame
,
190
, pp.
416
431
. 10.1016/j.combustflame.2017.12.019
40.
Zhang
,
Q. G.
,
2009
, “
Detailed Modeling of Soot Formation/Oxidation in Laminar Coflow Diffusion Flames
,”
Ph.D. thesis
,
University of Toronto
,
Toronto, Canada
.
41.
Bodor
,
A. L.
,
Franzelli
,
B.
,
Faravelli
,
T.
, and
Cuoci
,
A.
,
2019
, “
A Post Processing Technique to Predict Primary Particle Size of Sooting Flames Based on a Chemical Discrete Sectional Model: Application to Diluted Coflow Flames
,”
Combust. Flame
,
208
, pp.
122
138
. 10.1016/j.combustflame.2019.06.008
42.
Eaves
,
N. A.
,
Zhang
,
Q. G.
,
Liu
,
F. S.
,
Guo
,
H. S.
,
Dworkin
,
S. B.
, and
Thomson
,
M. J.
,
2016
, “
CoFlame: A Refined and Validated Numerical Algorithm for Modeling Sooting Laminar Coflow Diffusion Flames
,”
Comput. Phys. Commun.
,
207
, pp.
464
477
. 10.1016/j.cpc.2016.06.016
43.
Appel
,
J.
,
Bockhorn
,
H.
, and
Frenklach
,
M.
,
2000
, “
Kinetic Modeling of Soot Formation With Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons
,”
Combust. Flame
,
121
(
1-2
), pp.
122
136
. 10.1016/S0010-2180(99)00135-2
44.
Zhang
,
T. F.
,
Zhao
,
L. Y.
, and
Thomson
,
M. J.
,
2017
, “
Effects of n-Propylbenzene Addition to n-Dodecane on Soot Formation and Aggregate Structure in a Laminar Coflow Diffusion Flame
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1339
1347
. 10.1016/j.proci.2016.05.026
45.
Botero
,
M. L.
,
Adkins
,
E. M.
,
González-Calera
,
S.
,
Miller
,
H.
, and
Kraft
,
M.
,
2016
, “
PAH Structure Analysis of Soot in a Non-Premixed Flame Using High-Resolution Transmission Electron Microscopy and Optical Band Gap Analysis
,”
Combust. Flame
,
164
, pp.
250
258
. 10.1016/j.combustflame.2015.11.022
46.
Wei
,
J. J.
,
Song
,
C. L.
,
Lv
,
G.
,
Song
,
J. N.
,
Wang
,
L.
, and
Pang
,
H. T.
,
2015
, “
A Comparative Study of the Physical Properties of In-Cylinder Soot Generated From the Combustion of n-Heptane and Toluene/n-Heptane in a Diesel Engine
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1939
1946
. 10.1016/j.proci.2014.06.011
47.
Apicella
,
B.
,
Pré
,
P.
,
Alfè
,
M.
,
Ciajolo
,
A.
,
Gargiulo
,
V.
,
Russo
,
C.
,
Tregrossi
,
A.
,
Deldique
,
D.
, and
Rouzaud
,
J. N.
,
2015
, “
Soot Nanostructure Evolution in Premixed Flames by High Resolution Electron Transmission Microscopy (HRTEM)
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1895
1902
. 10.1016/j.proci.2014.06.121
48.
Puri
,
R.
,
Richardson
,
T. F.
,
Santoro
,
R. J.
, and
Dobbins
,
R. A.
,
1993
, “
Aerosol Dynamic Processes of Soot Aggregates in a Laminar Ethene Diffusion Flame
,”
Combust. Flame
,
92
(
3
), pp.
320
333
. 10.1016/0010-2180(93)90043-3
49.
Brasil
,
A. M.
,
Farias
,
T. L.
, and
Carvalho
,
M. G.
,
1999
, “
A Recipe for Image Characterization of Fractal-Like Aggregates
,”
J. Aerosol Sci.
,
30
(
10
), pp.
1379
1389
. 10.1016/S0021-8502(99)00026-9
50.
Zhang
,
H. B.
,
You
,
X. Q.
, and
Law
,
C. K.
,
2015
, “
Role of Spin-Triplet Polycyclic Aromatic Hydrocarbons in Soot Surface Growth
,”
J. Phys. Chem. Lett.
,
6
(
3
), pp.
477
481
. 10.1021/jz502635t
51.
Zhang
,
H. B.
,
Hou
,
D. Y.
,
Law
,
C. K.
, and
You
,
X. Q.
,
2016
, “
Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth
,”
J. Phys. Chem. A
,
120
(
5
), pp.
683
689
. 10.1021/acs.jpca.5b10306
52.
Frenklach
,
M.
, and
Wang
,
H.
,
1994
,
Detailed Mechanism and Modeling of Soot Particle Formation. Soot Formation on Combustion, Mechanism and Models
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.