Abstract

The correct definition of rock types plays a critical role in reservoir characterization, simulation, and field development planning. In this study, we use the critical pore size (linf) as an approach for reservoir rock typing. Two linf relations were separately derived based on two permeability prediction models and then merged together to drive a generalized linf relation. The proposed rock typing methodology includes two main parts: in the first part, we determine an appropriate constant coefficient, and in the second part, we perform reservoir rock typing based on two different scenarios. The first scenario is based on the forming groups of rocks using statistical analysis, and the second scenario is based on the forming groups of rocks with similar capillary pressure curves. This approach was applied to three data sets. In detail, two data sets were used to determine the constant coefficient, and one data set was used to show the applicability of the linf method in comparison with FZI for rock typing.

References

1.
Shebl
,
H. T.
,
Al Tamimi
,
M. A.
,
Boyd
,
D. A.
,
Al Muhairi
,
B. S.
,
Al Neyadi
,
A. M.
, and
Al Jawhari
,
M. O.
,
2014
, “
Planning and Implementing a SCAL Sample Selection Strategy for a Giant Carbonate Field Offshore Abu Dhabi, UAE
,”
Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, UAE
,
Nov. 10–13
,
Society of Petroleum Engineers
.
2.
Guo
,
G.
,
Diaz
,
M. A.
,
Paz
,
F. J.
,
Smalley
,
J.
, and
Waninger
,
E. A.
,
2007
, “
Rock Typing as an Effective Tool for Permeability and Water-Saturation Modeling: A Case Study in a Clastic Reservoir in the Oriente Basin
,”
SPE Reserv. Eval. Eng.
,
10
(
6
), pp.
9
12
. 10.2118/97033-PA
3.
Dakhelpour-Ghoveifel
,
J.
,
Shegeftfard
,
M.
, and
Dejam
,
M.
,
2019
, “
Capillary-Based Method for Rock Typing in Transition Zone of Carbonate Reservoirs
,”
J. Pet. Explor. Prod. Technol.
,
9
(
3
), pp.
2009
2018
. 10.1007/s13202-018-0593-6
4.
Xu
,
C.
, and
Torres-verdín
,
C.
,
2012
, “
Saturation-Height and Invasion Consistent Hydraulic Rock Typing Using Multi-Well Conventional Logs
,”
SPWLA 53rd Annual Logging Symposium
,
Cartagena, Colombia
,
June 16–20
, pp.
1
16
.
5.
Faramarzi-Palangar
,
M.
, and
Mirzaei-Paiaman
,
A.
,
2020
, “
Investigating Dynamic Rock Quality in Two-Phase Flow Systems Using TEM-Function: A Comparative Study of Different Rock Typing Indices
,”
Pet. Res.
, pp.
1
10
. 10.1016/j.ptlrs.2020.08.001
6.
Abbaszadeh
,
M.
,
Fujii
,
H.
, and
Fujimoto
,
F.
,
1996
, “
Permeability Prediction by Hydraulic Flow Units—Theory and Applications
,”
SPE Form Eval.
,
11
(
04
), pp.
263
271
. 10.2118/30158-PA
7.
Amaefule
,
J. O.
,
Altunbay
,
M.
,
Tiab
,
D.
,
Kersey
,
D. G.
, and
Keelan
,
D.
,
1993
, “
Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells
,”
Presented at the 1993 SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 3–6
,
Paper No. SPE-26436-MS
.
8.
Davies
,
D.
, and
Vessel
,
R.
,
1996
, “
Identification and Distribution of Hydraulic Flow Units in a Heterogeneous Carbonate Reservoir: North Robertson Unit, West Texas
,”
Permian Basin Oil and Gas Recovery Conference
,
Midland, TX
,
Mar. 27–29
,
Paper No. SPE-35183-MS
.
9.
Chen
,
X.
, and
Yao
,
G.
,
2017
, “
An Improved Model for Permeability Estimation in Low Permeable Porous Media Based on Fractal Geometry and Modified Hagen-Poiseuille Flow
,”
Fuel
,
210
, pp.
748
757
. 10.1016/j.fuel.2017.08.101
10.
Mirzaei-Paiaman
,
A.
,
Saboorian-Jooybari
,
H.
,
Chen
,
Z.
, and
Ostadhassan
,
M.
,
2019
, “
New Technique of True Effective Mobility (TEM-Function) in Dynamic Rock Typing: Reduction of Uncertainties in Relative Permeability Data for Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
179
, pp.
210
227
. 10.1016/j.petrol.2019.04.044
11.
Compan
,
A. L.
,
Bodstein
,
G. C.
, and
Couto
,
P.
,
2016
, “
A Relative Permeability Rock-Typing Methodology With a Clustering Method Combined With a Heuristic Optimization Procedure
,”
SPE J.
,
21
(
05
), pp.
1
899
. 10.2118/180916-PA
12.
Monfaredi
,
K.
,
Emami Niri
,
M.
, and
Sedaee
,
B.
,
2020
, “
Improving Forecast Uncertainty Quantification by Incorporating Production History and Using a Modified Ranking Method of Geostatistical Realizations
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
093004
. 10.1115/1.4046732
13.
Kolodzie
,
S.
,
1980
, “
Analysis of Pore Throat Size and Use of the Waxman-Smits Equation to Determine OOIP in Spindle Field, Colorado
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 21–24
,
Paper No. SPE-9382-MS
.
14.
Pittman
,
E. D.
,
1992
, “
Relationship of Porosity and Permeability to Various Parameters Derived From Mercury Injection-Capillary Pressure Curves for Sandstone
,”
AAPG Bulletin.
,
76
(
2
), pp.
191
198
.
15.
Aguilera
,
R.
,
2002
, “
Incorporating Capillary Pressure, Pore Throat Aperture Radii, Height Above Free-Water Table, and Winland r 35 Values on Pickett Plots
,”
AAPG Bulletin.
,
86
(
4
), pp.
605
624
. 10.1306/61EEDB5C-173E-11D7-8645000102C1865D
16.
Nabawy
,
B. S.
,
Géraud
,
Y.
,
Rochette
,
P.
, and
Bur
,
N.
,
2009
, “
Pore-Throat Characterization in Highly Porous and Permeable Sandstones
,”
Am. Assoc. Pet. Geol. Bull.
,
93
(
6
), pp.
719
739
. 10.1306/03160908131
17.
Jaya
,
I.
,
Sudaryanto
,
A.
, and
Widarsono
,
B.
,
2005
, “
Permeability Prediction Using Pore Throat and Rock Fabric: A Model From Indonesian Reservoirs
,”
SPE Asia Pacific Oil Gas Conference and Exhibition
,
Jakarta, Indonesia
,
Apr. 5–7
.
18.
Ngo
,
V. T.
,
Lu
,
V. D.
,
Nguyen
,
M. H.
,
Hoang
,
T. M.
,
Nguyen
,
H. M.
, and
Le
,
V. M.
,
2015
, “
A Comparison of Permeability Prediction Methods Using Core Analysis Data
,”
SPE Reservoir Characterisation and Simulation Conference and Exhibition
,
Abu Dhabi, UAE
,
Sept. 14–16
.
19.
Mirzaei-Paiaman
,
A.
,
Ostadhassan
,
M.
,
Rezaee
,
R.
,
Saboorian-Jooybari
,
H.
, and
Chen
,
Z.
,
2018
, “
A New Approach in Petrophysical Rock Typing
,”
J. Pet. Sci. Eng.
,
166
, pp.
445
464
. 10.1016/j.petrol.2018.03.075
20.
Ghanbarian
,
B.
,
Lake
,
L. W.
, and
Sahimi
,
M.
,
2019
, “
Insights Into Rock Typing: A Critical Study
,”
SPE J.
,
24
(
01
), pp.
230
242
. 10.2118/191366-PA
21.
Kozeny
,
J.
,
1927
, “
Uber Kapillare Leitung des Wassers im Boden
,”
Sitzungsber. Akad. Wiss. Wien
,
136
(
2a
), pp.
271
306
.
22.
Carman
,
P. C.
,
1937
, “
Fluid Flow Through Granular Beds
,”
Trans., Inst. Chem. Eng.
,
15
, pp.
150
166
. 10.1016/S0263-8762(97)80003-2
23.
Nooruddin
,
H. A.
, and
Hossain
,
M. E.
,
2011
, “
Modified Kozeny-Carmen Correlation for Enhanced Hydraulic Flow Unit Characterization
,”
J. Pet. Sci. Eng.
,
80
(
1
), pp.
107
115
. 10.1016/j.petrol.2011.11.003
24.
Izadi
,
M.
, and
Ghalambor
,
A.
,
2013
, “
New Approach in Permeability and Hydraulic-Flow-Unit Determination
,”
SPE Reserv. Eval. Eng.
,
16
(
03
), pp.
257
264
. 10.2118/151576-PA
25.
Ferreira
,
F. C.
,
Booth
,
R.
,
Oliveira
,
R.
,
Carneiro
,
G.
,
Bize-Forest
,
N.
, and
Wahanik
,
H.
,
2015
, “
New Rock-Typing Index Based on Hydraulic and Electric Tortuosity Data for Multi-Scale Dynamic Characterization of Complex Carbonate Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 28–30
,
Society of Petroleum Engineers
.
26.
Chen
,
X.
,
Yao
,
G.
,
Herrero-Bervera
,
E.
,
Cai
,
J.
,
Zhou
,
K.
,
Luo
,
C.
,
Jiang
,
P.
, and
Lu
,
J.
,
2018
, “
A New Model of Pore Structure Typing Based on Fractal Geometry
,”
Mar. Pet. Geol.
,
98
, pp.
291
305
. 10.1016/j.marpetgeo.2018.08.023
27.
Choudhary
,
A.
, and
Thapliyal
,
S.
,
2015
, “
Reservoir Zonation—A Novel Approach: Use of Core Derived K-Ø-Swirr Relationship to Define Reservoir Rock Types (RRTs)
,”
Offshore Technology Conference
,
Houston, TX
,
May 4–7
.
28.
Civan
,
F.
,
2002
, “
Fractal Formulation of the Porosity and Permeability Relationship Resulting in a Power-Law Flow Units Equation–A Leaky-Tube Model
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 20–21
.
29.
Lucia
,
F. J.
,
2007
,
Carbonate Reservoir Characterization: An Integrated Approach
, 2nd ed., vol.
55
.
30.
Lucia
,
J. F.
,
1995
, “
Rock-Fabric/Petrophysical Classification of Carbonate Pore Space Porosity Permeability Saturation
,”
Am. Assoc. Pet. Geol. Bull.
,
79
(
9
), pp.
1275
1300
. 10.1306/7834D4A4-1721-11D7-8645000102C1865D
31.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Schwartz
,
L. M.
,
1986
, “
New Pore-Size Parameter Characterizing Transport in Porous Media
,”
Phys. Rev. Lett.
,
57
(
20
), pp.
2564
2567
. 10.1103/PhysRevLett.57.2564
32.
Katz
,
A. J.
, and
Thompson
,
A. H.
,
1986
, “
Quantitative Prediction of Permeability in Porous Rock
,”
Phys. Rev. B
,
34
(
11
), pp.
8179
8181
. 10.1103/PhysRevB.34.8179
33.
Comisky
,
J. T.
,
Newsham
,
K. E.
,
Rushing
,
J. A.
, and
Blasingame
,
T. A.
,
2007
, “
A Comparative Study of Capillary-Pressure-Based Empirical Models for Estimating Absolute Permeability in Tight Gas Sands
,”
SPE Annual Technical Conference and Exhibition
,
Anaheim, CA
,
Nov. 11–14
,
Paper No. SPE 110050
.
34.
Rashid
,
F.
,
Glover
,
P. W. J.
,
Lorinczi
,
P.
,
Hussein
,
D.
,
Collier
,
R.
, and
Lawrence
,
J.
,
2015
, “
Permeability Prediction in Tight Carbonate Rocks Using Capillary Pressure Measurements
,”
Mar. Pet. Geol.
,
68
, pp.
536
550
. 10.1016/j.marpetgeo.2015.10.005
35.
Nooruddin
,
H. A.
,
Hossain
,
M. E.
,
Al-Yousef
,
H.
, and
Okasha
,
T.
,
2014
, “
Comparison of Permeability Models Using Mercury Injection Capillary Pressure Data on Carbonate Rock Samples
,”
J. Pet. Sci. Eng.
,
121
, pp.
9
22
. 10.1016/j.petrol.2014.06.032
36.
Ghanbarian
,
B.
,
Torres-Verdín
,
C.
, and
Skaggs
,
T. H.
,
2016
, “
Quantifying Tight-Gas Sandstone Permeability via Critical Path Analysis
,”
Adv. Water Resour.
,
92
, pp.
316
322
. 10.1016/j.advwatres.2016.04.015
37.
Katz
,
A. J.
, and
Thompson
,
A. H.
,
1987
, “
Prediction of Rock Electrical Conductivity From Mercury Injection Measurements
,”
J. Geophys. Res.
,
92
(
B1
), pp.
599
607
. 10.1029/JB092iB01p00599
38.
Sahimi
,
M.
,
2011
,
Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Archie
,
G. E.
,
1942
, “
The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics
,”
Trans. AIME
,
146
(
01
), pp.
54
62
. 10.2118/942054-G
40.
Banavar
,
J. R.
, and
Johnson
,
D. L.
,
1987
, “
Characteristic Pore Sizes and Transport in Porous Media
,”
Phys. Rev. B
,
35
(
13
), pp.
7283
7286
. 10.1103/PhysRevB.35.7283
41.
van Genuchten
,
M.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil. Sci. Soc. Am. J.
,
44
(
5
), pp.
892
898
. 10.2136/sssaj1980.03615995004400050002x
42.
Revil
,
A.
,
Florsch
,
N.
, and
Camerlynck
,
C.
,
2014
, “
Spectral Induced Polarization Porosimetry
,”
Geophys. J. Int.
,
198
(
2
), pp.
1016
1033
. 10.1093/gji/ggu180
You do not currently have access to this content.