Abstract

The increase in the production scale of chicken causes an increment in the produced manure. Chicken manure is considered an excellent soil amendment due to the high nitrogen and phosphorous content. However, the high production of manure exceeds the soil requirements. Rice husk is a by-product of rice production. Approximately one hundred forty million tons of rice husk is produced per year worldwide. There are several ways to manage rice husk such as animal bedding, direct combustion, or as a soil fertilizer. The husk's ashes are suitable for construction or as reinforcing material due to the high silica content. However, rice husk has a low volatile matter and high silica content, which makes processes like direct combustion inefficient. Thermochemical processes (such as pyrolysis and gasification) are effective ways to manage waste. The present study investigates the co-pyrolysis of chicken manure and rice husk. The experiments were conducted in a non-isothermal gravimetrical analyzer using nitrogen at a flowrate of 100 ml/min at three different heating rates (5, 10, and 15 °C/min). The degradation of individual biomass and biomass blends is investigated. The kinetic parameters are calculated using the Friedman method. Results show a positive synergetic effect for mixing ratios greater than 20% rice husk. The mixing ratio of 40% of rice husk manifested the best performance among all blends. This mixture showed the minimum energy of activation (90.2 kJ/mol). Also, the 40% rice husk mixing ratio showed maximum conversion when compared with chicken manure's conversion.

References

References
1.
US Energy Information Administration
. “
What is US electricity generation by energy source?
2019
, https://www.eia.gov/tools/faqs/faq.php?id=427&t=3t, Accessed December 23, 2019.
2.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
. 10.1115/1.4007659
3.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2013
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
. 10.1115/1.4025286
4.
Parker
,
H. W.
,
1981
, “
Engine Fuels From Biomass
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
344
351
. 10.1115/1.3230864
5.
Hosoya
,
T.
,
Kawamoto
,
H.
, and
Saka
,
S.
,
2007
, “
Cellulose–Hemicellulose and Cellulose–Lignin Interactions in Wood Pyrolysis at Gasification Temperature
,”
J. Anal. Appl. Pyrolysis
,
80
(
1
), pp.
118
125
. 10.1016/j.jaap.2007.01.006
6.
Liu
,
Q.
,
Zhong
,
Z.
,
Wang
,
S.
, and
Luo
,
Z.
,
2011
, “
Interactions of Biomass Components During Pyrolysis: A TG-FTIR Study
,”
J. Anal. Appl. Pyrolysis
,
90
(
2
), pp.
213
218
. 10.1016/j.jaap.2010.12.009
7.
Yang
,
H.
,
Yan
,
R.
,
Chen
,
H.
,
Zheng
,
C.
,
Lee
,
D. H.
, and
Liang
,
D. T.
,
2006
, “
InDepth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin
,”
Energy Fuels
,
20
(
1
), pp.
388
393
. 10.1021/ef0580117
8.
Lam
,
K. L.
,
Oyedun
,
A. O.
, and
Hui
,
C. W.
,
2012
, “
Numerical Study of Mixed-Feedstock Pyrolysis
,”
11th International Symposium on Process Systems Engineering
,
31
, pp.
1311
1315
. 10.1016/B978-0-444-59506-5.50093-6
9.
Paradela
,
F.
,
Pinto
,
F.
,
Gulyurtlu
,
I.
,
Cabrita
,
I.
, and
Lapa
,
N.
,
2009
, “
Study of the Co-pyrolysis of Biomass and Plastic Wastes
,”
Clean Technol. Environ. Policy
,
11
(
1
), pp.
115
122
. 10.1007/s10098-008-0176-1
10.
Vasile
,
C.
, and
Brebu
,
M. A.
,
2007
, “
Thermal Valorisation of Biomass and of Synthetic Polymer Waste. Upgrading of Pyrolysis Oils
,”
Cellul Chem Technol
,
40
(
7
), pp.
489
512
.
11.
Uzoejinwa
,
B. B.
,
He
,
X.
,
Wang
,
S.
,
El-Fatah Abomohra
,
A.
,
Hu
,
Y.
, and
Wang
,
Q.
,
2018
, “
Co-pyrolysis of Biomass and Waste Plastics as a Thermochemical Conversion Technology for High-Grade Biofuel Production: Recent Progress and Future Directions Elsewhere Worldwide
,”
Energy Convers. Manage.
,
163
, pp.
468
492
. 10.1016/j.enconman.2018.02.004
12.
Oyedun
,
A. O.
,
Gebreegziabher
,
T.
,
Ng
,
D. K. S.
, and
Hui
,
C. W.
,
2014
, “
Mixed-Waste Pyrolysis of Biomass and Plastics Waste—A Modelling Approach to Reduce Energy Usage
,”
Energy
,
75
, pp.
127
135
. 10.1016/j.energy.2014.05.063
13.
Dang
,
K. V.
,
Yusup
,
S.
,
Uemura
,
Y.
, and
Nuruddin
,
M. F.
,
2013
, “
Catalytic Pyrolysis of Rice Husk via Semi-Batch Reactor Using L9 Taguchi Orthogonal Array
,”
Adv. Mater. Res.
,
787
, pp.
184
189
. www.scientific.net/AMR.787.184
14.
Beagle
,
E. C.
“Rice-husk Conversion to Energy.”
Agricultural Services Bulletin 31
,
Food and Agricultural Organization
,
Rome
(
1978
).
15.
Kaupp
,
A.
,
1984
,
Gasification of Rice Hulls, Theory and Praxis
,
Friedr. Vieweg and Sohn
,
Braunschweig, Germany
.
16.
Bridgwater
,
A. V.
,
1989
, “Pyrolysis, Gasification and Liquefaction Technologies,”
Pyrolysis Gasification
,
GL
Ferrero
,
K
Maniatis
,
A
Buekens
, and
AV
Bridgwater
, ed.,
Elsevier
,
Amsterdam
, pp.
198
678
.
17.
Ahiduzzaman
,
M.
, and
Sadrul Islam
,
A. K. M.
,
2015
, “
Thermo-gravimetric and Kinetic Analysis of Different Varieties of Rice Husk
,”
The 6th BSME International Conference on Thermal Engineering
,
105
, pp.
646
651
. 10.1016/j.proeng.2015.05.043
18.
Hossain
,
M. S.
,
Islam
,
M. R.
,
Rahman
,
M. S.
,
Kader
,
M. A.
, and
Haniu
,
H.
,
2017
, “
Biofuel From Co-Pyrolysis of Solid Tire Waste and Rice Husk
,”
Energy Procedia
,
110
, pp.
453
458
. 10.1016/j.egypro.2017.03.168
19.
Selim
,
O. M.
and
Amano
,
R. S.
,
2020
, “
Effect of Heating Rate on Chemical Kinetics of Chicken Manure With Different Gas Agents
”.
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102104
. 10.1115/1.4047018
20.
Selim
,
O. M.
and
Amano
,
R. S.
,
2020
,
“Co-Pyrolysis of Chicken and Cow Manure
,”
ASME J. Energy Resour. Technol.
,
(in press)
. 10.1115/1.4047597
21.
Costa
,
P.
,
Pinto
,
F.
,
Miranda
,
M.
,
André
,
R.
, and
Rodrigues
,
M.
,
2014
, “
Study of the Experimental Conditions of the Co-pyrolysis of Rice Husk and Plastic Wastes
,”
Chem. Eng. Trans.
,
39
(
Special Issue
), pp.
1639
1644
. 10.3303/CET1439274
22.
White
,
J. E.
,
James Catallo
,
W.
, and
Legendre
,
B. L.
,
2011
, “
Biomass Pyrolysis Kinetics: A Comparative Critical Review With Relevant Agricultural Residue Case Studies
,”
J. Anal. Appl. Pyrolysis
,
91
(
1
), pp.
1
33
. 10.1016/j.jaap.2011.01.004
23.
Ummah
,
H.
,
Suriamihardja
,
D. A.
,
Selintung
,
M.
, and
Wahab
,
A. W.
,
2015
, “
Analysis of the Chemical Composition of Rice Husk Used as Absorber Plates sea Water Into Clean Water
,”
ARPN J. Eng. Appl. Sci.
,
10
(
14
), pp.
6046
6050
.
24.
Sobek
,
S.
, and
Werle
,
S.
,
2020
, “
Kinetic Modelling of Waste Wood Devolatilization During Pyrolysis Based on Thermogravimetric Data and Solar Pyrolysis Reactor Performance
,”
Fuel
,
261
, pp.
116459
. 10.1016/j.fuel.2019.116459
25.
Phyllis2, Database for Biomass and Waste, 2015, https://www.ecn.nl/phyllis2/Biomass/View/3501.
26.
Ro
,
K. S.
,
Cantrell
,
K. B.
, and
Hunt
,
P. G.
,
2010
, “
High-Temperature Pyrolysis of Blended Animal Manures for Producing Renewable Energy and Value-Added Biochar
,”
Ind. Eng. Chem. Res.
,
49
(
20
), pp.
10125
10131
. 10.1021/ie101155m
27.
Gaur
,
S.
, and
Reed
,
T. B.
,
1995
,
An Atlas of Thermal Data for Biomass and Other Fuels. No. NREL/TP-433-7965
,
National Renewable Energy Lab.
,
Golden, CO
.
28.
Hussein
,
M. H.
,
2016
, “
Experimental Investigation of Chicken Manure Pyrolysis and Gasification
,”
Ph.D. thesis
,
University of Wisconsin-Milwaukee
.
29.
Kamruzzaman
,
M.
, and
Sadrul Islam
,
A. K. M.
,
2011
, “
Physical and Thermochemical Properties of Rice Husk in Bangladesh
,”
Int. J. BioRes.
,
11
(
6
), pp.
45
49
.
30.
Tańczuk
,
M.
,
Junga
,
R.
,
Kolasa-Więcek
,
A.
, and
Niemiec
,
P.
,
2019
, “
Assessment of the Energy Potential of Chicken Manure in Poland
,”
Energies
,
12
(
7
), pp.
1244
1262
. 10.3390/en12071244
31.
Xiu-juan
,
G. U. O.
,
Shu-rong
,
W. A. N. G.
,
Kai-ge
,
W. A. N. G.
,
Qian
,
L. I. U.
, and
Zhong-yang
,
L. U. O.
,
2010
, “
Influence of Extractives on Mechanism of Biomass Pyrolysis
,”
J. Fuel Chem. Technol.
,
38
(
1
), pp.
42
46
. 10.1016/S1872-5813(10)60019-9
32.
Mallick
,
D.
,
Poddar
,
M. K.
,
Mahanta
,
P.
, and
Moholkar
,
V. S.
,
2018
, “
Discernment of Synergism in Pyrolysis of Biomass Blends Using Thermogravimetric Analysis
,”
Bioresour. Technol.
,
261
, pp.
294
305
. 10.1016/j.biortech.2018.04.011
33.
Dayananda
,
B. S.
,
Manjunath
,
S. H.
,
Girish
,
K. B.
, and
Sreepathi
,
L. K.
,
2013
, “
An Experimental Approach on Gasification of the Chicken Litter With Rice Husk
,”
Int. J. Innovat. Res. Sci. Eng. Technol.
,
2
(
7
), pp.
2837
2842
.
34.
Pazó
,
J. A.
,
Granada
,
E.
,
Saavedra
,
Á.
,
Eguía
,
P.
, and
Collazo
,
J.
,
2010
, “
Biomass Thermogravimetric Analysis: Uncertainty Determination Methodology and Sampling Maps Generation
,”
Int. J. Mol. Sci.
,
11
(
7
), pp.
2701
2714
. 10.3390/ijms11072701
35.
Yang
,
Y.
,
Zhang
,
M.
, and
Wang
,
D.
,
2018
, “
A Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production
,”
ASME. J. Energy Resour. Technol.
,
140
(
4
), p.
041804
. 10.1115/1.4039602
36.
El-Sayed
,
S. A.
, and
Khairy
,
M.
,
2015
, “
Effect of Heating Rate on the Chemical Kinetics of Different Biomass Pyrolysis Materials
,”
Biofuels
,
6
(
3–4
), pp.
157
170
. 10.1080/17597269.2015.1065590
37.
Varma
,
A. K.
, and
Mondal
,
P.
,
2016
, “
Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis
,”
ASME. J. Energy Resour. Technol.
,
138
(
5
), p.
052205
. 10.1115/1.4032729
38.
Kim
,
S.-S.
, and
Agblevor
,
F. A.
,
2007
, “
Pyrolysis Characteristics and Kinetics of Chicken Litter
,”
Waste Manage.
,
27
(
1
), pp.
135
140
. 10.1016/j.wasman.2006.01.012
You do not currently have access to this content.