Abstract

In view of high-energy consumption, high baking cost, and serious pollution emission during the baking process of tobacco leaves, thermogravimetric analysis is employed to investigate the combustion characteristics of coal, tobacco straw, and cinder. Analyzing thermogravimetric-derivative of thermogravimetric (TG-DTG) characteristics of samples with different blending ratios and based on the ignition temperature and burnout temperature, the combustion characteristics of the samples are obtained. Compared with the individual combustion of coal, the blending ratio of the optimal positive effect is obtained. It is illustrated that different blending ratios of coal, tobacco straw, and cinder result in different effects between promotion and inhibition. Tobacco straw is beneficial to burn on fire but adverse to keep combustion of fixed carbon. Compared with the TG and DTG characteristics in different blending ratios of coal, tobacco straw, and corresponding combustion characteristic parameter, it is illustrated that the best blending ratio of tobacco straw is 40%. According to the TG and DTG characteristics of different blending ratios of coal, cinder, and corresponding combustion characteristic parameter, it is shown that the more blending ratio of cinder, the more adverse effect to fixed carbon burning. The composite fuels with 40% tobacco straw, 10% coal cinder, and 50% coal have two obvious advantages. On the one hand, it can maintain quick burning and the volatile combustion of the tobacco straw at low-temperature stage. On the other hand, it can keep continuous combustion of the fixed carbon in coal at high-temperature stage.

References

References
1.
Kuznetsov
,
G. V.
,
Syrodoy
,
S. V.
,
Kostoreva
,
A. A.
,
Kostoreva
,
Z. A.
, and
Nigay
,
N. A.
,
2020
, “
Effect of Concentration and Relative Position of Wood and Coal Particles on the Characteristics of the Mixture Ignition Process
,”
Fuel
,
274
, p.
117843
. 10.1016/j.fuel.2020.117843
2.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
. 10.1115/1.4001574
3.
Chen
,
X. Y.
,
Han
,
K. X.
,
Huang
,
Z. Y.
, and
Wang
,
Z. H.
,
2017
, “
Ash Fusibility Based on Modes of Occurrence and High-Temperature Behaviors of Mineral Matter in Coals
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022003
. 10.1115/1.4034289
4.
Wang
,
T.
,
Yang
,
Q.
,
Wang
,
Y. H.
,
Wang
,
J. W.
,
Zhang
,
Y. S.
, and
Pan
,
W. P.
,
2020
, “
Arsenic Release and Transformation in Co-Combustion of Biomass and Coal: Effect of Mineral Elements and Volatile Matter in Biomass
,”
Bioresour. Technol.
,
297
, p.
122388
. 10.1016/j.biortech.2019.122388
5.
Yan
,
Y. F.
,
Wu
,
G. E.
,
Huang
,
W. P.
,
Zhang
,
L.
,
Li
,
L. X.
, and
Yang
,
Z. Q.
,
2019
, “
Numerical Comparison Study of Methane Catalytic Combustion Characteristic Between Newly Proposed Opposed Counter-Flow Micro-Combustor and the Conventional Ones
,”
Energy
,
170
, pp.
403
410
. 10.1016/j.energy.2018.12.114
6.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X. H.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
. 10.1115/1.4032239
7.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061602
. 10.1115/1.4034547
8.
Wang
,
J. A.
,
Zhang
,
Q.
,
Wei
,
Y. W.
,
Yang
,
G. H.
, and
Wei
,
F. J.
,
2019
, “
Integrated Furnace for Combustion/Gasification of Biomass Fuel for Tobacco Curing
,”
Waste Biomass Valorization
,
10
(
7
), pp.
2037
2044
. 10.1007/s12649-018-0205-1
9.
He
,
Z. Q.
,
Yan
,
Y. F.
,
Xu
,
F. L.
,
Yang
,
Z. Q.
,
Cui
,
H. Y.
,
Wu
,
Z. D.
, and
Li
,
L. X.
,
2020
, “
Combustion Characteristics and Thermal Enhancement of Premixed Hydrogen/Air in Micro Combustor With Pin Fin Arrays
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
5014
5027
. 10.1016/j.ijhydene.2019.12.093
10.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041801
. 10.1115/1.4007484
11.
Sun
,
J. F.
,
Yang
,
R. S.
,
Wu
,
Z. H.
,
Xia
,
K. B.
, and
Zhang
,
Q. G.
,
2010
, “
Characteristic of Bio-Coal Briquette and Its Application in Flue-Curing Tobacco
,”
Chin. Tob. Sci.
,
31
(
3
), pp.
63
66
. 10.3969/j.issn.1007-5119.2010.03.014
12.
Ren
,
T. B.
,
Liu
,
X. J.
,
Xu
,
C. S.
,
Feng
,
H. L.
,
Cai
,
X. J.
,
Wei
,
Y. W.
, and
Liu
,
G. S.
,
2019
, “
Application of Biomass Moulding Fuel to Automatic Flue-Cured Tobacco Furnaces Efficiency and Cost-Effectiveness
,”
Therm. Sci.
,
23
(
5
), pp.
2667
2675
. 10.2298/TSCI181202156R
13.
Kumar
,
M.
,
Oyedun
,
A. O.
, and
Kumar
,
A.
,
2018
, “
A Review on the Current Status of Various Hydrothermal Technologies on Biomass Feedstock
,”
Renew. Sustain. Energy Rev.
,
81
(
2
), pp.
1742
1770
. 10.1016/j.rser.2017.05.270
14.
Vakalis
,
S.
,
Moustakas
,
K.
,
Heimann
,
R.
, and
Loizidou
,
M.
,
2019
, “
The Renewable Battery Concept via Conversion of Agricultural Waste Into Biocoal Using Frictional Pyrolysis
,”
J. Cleaner Prod.
,
229
, pp.
1183
1188
. 10.1016/j.jclepro.2019.05.077
15.
Cong
,
K. L.
,
Han
,
F.
,
Zhang
,
Y. G.
, and
Li
,
Q. H.
,
2019
, “
The Investigation of Co-Combustion Characteristics of Tobacco Stalk and Low Rank Coal Using a Macro-TGA
,”
Fuel
,
237
, pp.
126
132
. 10.1016/j.fuel.2018.09.149
16.
Kim
,
H. J.
,
Lu
,
G. Q.
,
Naruse
,
I.
,
Yuan
,
J. W.
, and
Ohtake
,
K.
,
2001
, “
Modeling on Combustion Characteristics of Biocoalbriquettes
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
27
31
. 10.1115/1.1347988
17.
Nash
,
L.
,
Klettlinger
,
J.
, and
Vasu
,
S.
,
2017
, “
Ellipsometric Measurements of the Thermal Stability of Alternative Fuels
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062207
. 10.1115/1.4036961
18.
Qi
,
J.
,
Li
,
Q.
,
Wu
,
J. J.
,
Jiang
,
J. K.
,
Miao
,
Z. Y.
, and
Li
,
D. S.
,
2017
, “
Biocoal Briquettes Combusted in a Household Cooking Stove: Improved Thermal Efficiencies and Reduced Pollutant Emissions
,”
Environ. Sci. Technol.
,
51
(
3
), pp.
1886
1892
. 10.1021/acs.est.6b03411
19.
Li
,
H. J.
,
Yan
,
Y. F.
,
Feng
,
S.
,
Chen
,
Y. R.
,
Li
,
L. X.
,
Zhang
,
L.
, and
Yang
,
Z. Q.
,
2019
, “
Hydrogen Release Mechanism and Performance of Ammonia Borane Catalyzed by Transition Metal Catalysts Cu-Co/MgO(100)
,”
Int. J. Energy Res.
,
43
(
2
), pp.
921
930
. 10.1002/er.4325
20.
Molino
,
A.
,
Chianese
,
S.
, and
Musmarra
,
D.
,
2016
, “
Biomass Gasification Technology: The State of the Art Overview
,”
J. Energy Chem.
,
25
(
1
), pp.
10
25
. 10.1016/j.jechem.2015.11.005
21.
Guell
,
B. M.
,
Sandquist
,
J.
, and
Sorum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
. 10.1115/1.4007660
22.
Yan
,
B. C.
,
Zhang
,
S. P.
,
Chen
,
W. B.
, and
Cai
,
Q. J.
,
2018
, “
Pyrolysis of Tobacco Wastes for Bio-Oil With Aroma Compounds
,”
J. Anal. Appl. Pyrolysis
,
136
, pp.
248
254
. 10.1016/j.jaap.2018.09.016
23.
Zhang
,
S.
, and
Xiao
,
R.
,
2018
, “
Comparison of Pyrite Cinder With Synthetic and Natural Iron-Based Oxygen Carriers in Coal-Fueled Chemical-Looping Combustion
,”
Greenhouse Gases—Sci. Technol.
,
8
(
1
), pp.
106
119
. 10.1002/ghg.1724
24.
Zhang
,
S.
,
Rajendran
,
S.
,
Henderson
,
S.
,
Zeng
,
D. W.
,
Xiao
,
R.
, and
Bhattacharya
,
S.
,
2015
, “
Use of Pyrite Cinder as an Iron-Based Oxygen Carrier in Coal-Fueled Chemical Looping Combustion
,”
Energy Fuels
,
29
(
4
), pp.
2645
2655
. 10.1021/acs.energyfuels.5b00194
25.
Zhou
,
C. C.
,
Liu
,
G. J.
,
Fang
,
T.
, and
Lam
,
P. K. S.
,
2015
, “
Investigation on Thermal and Trace Element Characteristics During Co-Combustion Biomass With Coal Gangue
,”
Bioresour. Technol.
,
175
, pp.
454
462
. 10.1016/j.biortech.2014.10.129
26.
Jayaraman
,
K.
,
Kok
,
M. V.
, and
Gokalp
,
L.
,
2016
, “
Thermogravimetric and Mass Spectrometric (TG-MS) Analysis and Kinetics of Coal-Biomass Blends
,”
Renew. Energy
,
101
, pp.
293
300
. 10.1016/j.renene.2016.08.072
27.
Panwar
,
N. L.
,
Gajera
,
B.
,
Jain
,
S.
, and
Salvi
,
B. L.
,
2020
, “
Thermogravimetric Studies on Co-Pyrolysis of Raw/Torrefied Biomass and Coal Blends
,”
Waste Manage. Res.
, p.
0734242X19896624
. 10.1177/0734242x19896624
28.
Zhang
,
W. D.
, and
Yun
,
Z. M.
,
2011
, “
Investigation and Application of Blending Oil and Cinder in CFB Boiler
,”
Inner Mongolia Sci. Technol. Econ.
,
16
, pp.
86
87 and 93
. 10.3969/j.issn.1007-6921.2011.16.041
You do not currently have access to this content.