Abstract

An effective way to slow down the process of coal spontaneous combustion (CSC) is by injecting inhibitor liquid into the coal body. Research on inhibitors has achieved good effects, but many have occurred only under laboratory conditions; for applications in actual underground coal mines, there may be many limitations. In this paper, MgCl2, CaCl2, and NH4H2PO4 are selected, and they are prepared as inhibitor liquids and injected into coal samples from three coal mines to obtain inhibitor coal samples. Industrial analysis (IA) and thermogravimetric analysis (TGA) of raw and inhibitor coal samples were carried out under laboratory conditions. Finally, MgCl2 was selected as the inhibitor to carry out a field test in a coal mine working face. The results show that the volatile content, fixed carbon content, and calorific value decrease and the ash content increases after injection of the inhibitor. NH4H2PO4 has the greatest influence on coal, which is more obvious in the Nantun coal samples. MgCl2 and CaCl2 have stronger inhibitory effects in the temperature range of 0–200 °C, and the inhibitory effects decrease in the high-temperature stage. This is due to the evaporation of water and the loss of active components under high temperature. The inhibitory effect of NH4H2PO4 at high temperature is stronger than those of MgCl2 and CaCl2. The CO concentration was significantly reduced after injection of the inhibitor liquid in an underground field, which delays the oxidation process of coal for approximately 10 days and greatly reduces the risk of CSC.

References

1.
Xu
,
H.
,
Wang
,
G.
,
Fan
,
C.
,
Liu
,
X.
, and
Wu
,
M.
,
2020
, “
Grain-Scale Reconstruction and Simulation of Coal Mechanical Deformation and Failure Behaviors Using Combined SEM Digital Rock Data and DEM Simulator
,”
Powder Technol.
,
360
(
1
), pp.
1305
1320
. 10.1016/j.powtec.2019.07.014
2.
Lu
,
W.
,
Guo
,
B.
,
Qi
,
G.
,
Cheng
,
W.
, and
Yang
,
W.
,
2020
, “
Experimental Study on the Effect of Preinhibition Temperature on the Spontaneous Combustion of Coal Based on an MgCl2 Solution
,”
Fuel
,
265
(
4
), pp.
117032
. 10.1016/j.fuel.2020.117032
3.
Ding
,
Y.
,
Huang
,
B.
,
Li
,
K.
,
Du
,
W.
,
Lu
,
K.
, and
Zhang
,
Y.
,
2020
, “
Thermal Interaction Analyssis of Isolated Hemicellulose and Cellulose by Kinetic Parameters During Biomass Pyrolysis
,”
Energy
,
195
(
3
), p.
117010
. 10.1016/j.energy.2020.117010
4.
Du
,
W.
,
Wang
,
G.
,
Wang
,
Y.
, and
Liu
,
X.
,
2019
, “
Thermal Degradation of Bituminous Coal With Both Model-Free and Model-Fitting Methods
,”
Appl. Therm. Eng.
,
152
(
4
), pp.
169
174
. 10.1016/j.applthermaleng.2019.02.092
5.
Liu
,
Q.
,
Chai
,
J.
,
Chen
,
S.
,
Zhang
,
D.
,
Yuan
,
Q.
, and
Wang
,
S.
,
2020
, “
Monitoring and Correction of the Stress in an Anchor Bolt Based on Pulse Pre-Pumped Brillouin Optical Time Domain Analysis
,”
Energy Sci. Eng.
,
8
(
6
), pp.
2011
2023
. 10.1002/ese3.644
6.
Cheng
,
W.
,
Hu
,
X.
,
Xie
,
J.
, and
Zhao
,
Y.
,
2017
, “
An Intelligent Gel Designed to Control the Spontaneous Combustion of Coal: Fire Prevention and Extinguishing Properties
,”
Fuel
,
210
(
12
), pp.
826
835
. 10.1016/j.fuel.2017.09.007
7.
Song
,
Z.
, and
Kuenzer
,
C.
,
2014
, “
Coal Fires in China Over the Last Decade: A Comprehensive Review
,”
Int. J. Coal Geol.
,
133
(
11
), pp.
72
99
. 10.1016/j.coal.2014.09.004
8.
Wang
,
J.
,
Meng
,
X.
,
Ma
,
X.
,
Xiao
,
Q.
,
Liu
,
B.
, and
Zhang
,
G.
,
2019
, “
Experimental Study on Whether and How Particle Size Affects the Flame Propagation and Explosibility of Oil Shale Dust
,”
Process Saf. Prog.
,
38
(
3
), p.
e12075
. 10.1002/prs.12075
9.
Wang
,
J.
,
Zhang
,
J.
,
Zhu
,
K.
, and
Zhou
,
L.
,
2016
, “
Anatomy of Explosives Spontaneous Combustion Accidents in the Chinese Underground Coal Mine: Causes and Prevention
,”
Process Saf. Prog.
,
35
(
3
), pp.
221
227
. 10.1002/prs.11816
10.
Xia
,
T.
,
Zhou
,
F.
,
Gao
,
F.
,
Kang
,
J.
,
Liu
,
J.
, and
Wang
,
J.
,
2015
, “
Simulation of Coal Self-Heating Processes in Underground Methane-Rich Coal Seams
,”
Int. J. Coal Geol.
,
141–142
(
3
), pp.
1
12
. 10.1016/j.coal.2015.02.007
11.
Carras
,
J. N.
, and
Young
,
B. C.
,
1994
, “
Self-Heating of Coal and Related Materials: Models, Application and Test Methods
,”
Prog. Energy Combust. Sci.
,
20
(
1
), pp.
1
15
. 10.1016/0360-1285(94)90004-3
12.
Pandey
,
J.
,
Mohalik
,
N. K.
,
Mishra
,
R. K.
,
Khalkho
,
A.
,
Kumar
,
D.
, and
Singh
,
V. K.
,
2015
, “
Investigation of the Role of Fire Retardants in Preventing Spontaneous Heating of Coal and Controlling Coal Mine Fires
,”
Fire Technol.
,
51
(
2
), pp.
227
245
. 10.1007/s10694-012-0302-9
13.
Dou
,
G.
,
Wang
,
D.
,
Zhong
,
X.
, and
Qin
,
B.
,
2014
, “
Effectiveness of Catechin and Poly(Ethylene Glycol) at Inhibiting the Spontaneous Combustion of Coal
,”
Fuel Process. Technol.
,
120
(
4
), pp.
123
127
. 10.1021/acs.langmuir.0c01398.s002
14.
Cui
,
C.
,
Jiang
,
S.
,
Shao
,
H.
,
Zhang
,
W.
,
Wang
,
K.
, and
Wu
,
Z.
,
2018
, “
Experimental Study on Thermo-Responsive Inhibitors Inhibiting Coal Spontaneous Combustion
,”
Fuel Process. Technol.
,
175
(
6
), pp.
113
122
. 10.1016/j.fuproc.2018.03.019
15.
Tang
,
Y.
,
2018
, “
Experimental Investigation of Applying MgCl2 and Phosphates to Synergistically Inhibit the Spontaneous Combustion of Coal
,”
J. Energy Inst.
,
91
(
5
), pp.
639
645
. 10.1016/j.joei.2017.06.006
16.
Smith
,
A. C.
,
Miron
,
Y.
, and
Lazzara
,
C. P.
,
1988
, Inhibition of Spontaneous Combustion of Coal, Report of Investigations.
17.
Slovák
,
V.
, and
Taraba
,
B.
,
2012
, “
Urea and CaCl2 as Inhibitors of Coal Low-Temperature Oxidation
,”
J. Therm. Anal. Calorim.
,
110
(
1
), pp.
363
367
. 10.1007/s10973-012-2482-4
18.
Zhan
,
J.
,
Wang
,
H. H.
,
Song
,
S. N.
,
Hu
,
Y.
, and
Li
,
J.
,
2011
, “
Role of an Additive in Retarding Coal Oxidation at Moderate Temperatures
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2515
2522
. 10.1016/j.proci.2010.06.046
19.
Li
,
P.
,
Shao
,
H.
,
Jiang
,
S.
,
Wu
,
Z. W.
,
Chuanbo
,
C.
, and
Xumao
,
S.
,
2019
, “
Experimental Study on the Inhibitory Effects and Mechanisms of Crystalliferous Water-Containing Mineral Salts
,”
Combust. Sci. Technol.
,
191
(
3
), pp.
403
418
. 10.1080/00102202.2018.1492569
20.
Licheng
,
L.
,
Zhiyang
,
Z.
,
Qunying
,
W.
,
Li
,
J.
, and
Yifeng
,
Y.
,
2014
, “
Polyethylene as a Novel Low-Temperature Inhibitor for Lignite Coal
,”
J. Therm. Anal. Calorim.
,
117
(
3
), pp.
1321
1325
. 10.1007/s10973-014-3876-2
21.
Wang
,
L. y.
,
Xu
,
Y. l.
,
Jiang
,
S. g.
,
Yu
,
M. g.
,
Chu
,
T. x.
,
Zhang
,
W. q.
,
Wu
,
Z. y.
, and
Kou
,
L. w.
,
2012
, “
Imidazolium Based Ionic Liquids Affecting Functional Groups and Oxidation Properties of Bituminous Coal
,”
Saf. Sci.
,
50
(
7
), pp.
1528
1534
. 10.1016/j.ssci.2012.03.006
22.
Li
,
J.
,
Li
,
Z.
,
Yang
,
Y.
,
Zhang
,
X.
,
Yan
,
D.
, and
Liu
,
L.
,
2017
, “
Inhibitive Effects of Antioxidants on Coal Spontaneous Combustion
,”
Energy Fuels
,
31
(
12
), pp.
14180
14190
. 10.1021/acs.energyfuels.7b02339
23.
,
H. F.
,
Xiao
,
Y.
,
Deng
,
J.
,
Li
,
D. j.
,
Yin
,
L.
, and
Shu
,
C. M.
,
2019
, “
Inhibiting Effects of 1-Butyl-3-Methyl Imidazole Tetrafluoroborate on Coal Spontaneous Combustion Under Different Oxygen Concentrations
,”
Energy
,
186
(
11
), p.
115907
. 10.1016/j.energy.2019.115907
24.
Yang
,
Y.
, and
Tsai
,
Y. T.
,
2018
, “
Inhibition Ability of Ionic Liquid [Bmim][NO3], [Bmim][BF4], and [Emim][BF4] on Spontaneous Coal Combustion
,”
J. Therm. Anal. Calorim.
,
132
(
3
), pp.
1943
1951
. 10.1007/s10973-018-7008-2
25.
Cui
,
F. S.
,
Laiwang
,
B.
,
Shu
,
C. M.
, and
Jiang
,
J. C.
,
2018
, “
Inhibiting Effect of Imidazolium-Based Ionic Liquids on the Spontaneous Combustion Characteristics of Lignite
,”
Fuel
,
217
(
4
), pp.
508
514
.
26.
Li
,
J. l.
,
Lu
,
W.
,
Cao
,
Y. j.
,
Kong
,
B.
, and
Zhang
,
Q. s.
,
2019
, “
Method of Pre-Oxidation Treatment for Spontaneous Combustion Inhibition and Its Application
,”
Process Saf. Environ. Prot.
,
131
(
11
), pp.
169
177
. 10.1016/j.fuel.2017.12.092
27.
Du
,
W.
,
Wang
,
Y.
,
Liu
,
X.
, and
Sun
,
L.
,
2018
, “
Study on Low Temperature Oxidation Characteristics of Oil Shale Based on Temperature Programmed System
,”
Energies
,
11
(
10
), p.
2594
. 10.3390/en11102594
28.
Avila
,
C.
,
Wu
,
T.
, and
Lester
,
E.
,
2014
, “
Estimating the Spontaneous Combustion Potential of Coals Using Thermogravimetric Analysis
,”
Energy Fuels
,
28
(
3
), pp.
1765
1773
. 10.1021/ef402119f
29.
Wang
,
J.
,
Zhang
,
Y.
,
Wang
,
J.
,
Zhou
,
C.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2020
, “
Study on the Chemical Inhibition Mechanism of DBHA on Free Radical Reaction During Spontaneous Combustion of Coal
,”
Energy Fuels
,
34
(
5
), pp.
6355
6366
. 10.1021/acs.energyfuels.0c00226
30.
Tang
,
Y.
,
2016
, “
Inhibition of Low-Temperature Oxidation of Bituminous Coal Using a Novel Phase-Transition Aerosol
,”
Energy Fuels
,
30
(
11
), pp.
9303
9309
. 10.1021/acs.energyfuels.6b02040
31.
Raymond
,
C. J.
,
Farmer
,
J.
, and
Dockery
,
C. R.
,
2016
, “
Thermogravimetric Analysis of Target Inhibitors for the Spontaneous Self-Heating of Coal
,”
Combust. Sci. Technol.
,
188
(
8
), pp.
1249
1261
. 10.1080/00102202.2016.1177034
32.
Qi
,
X.
,
Wei
,
C.
,
Li
,
Q.
, and
Zhang
,
L.
,
2016
, “
Controlled-Release Inhibitor for Preventing the Spontaneous Combustion of Coal
,”
Nat. Hazards
,
82
(
2
), pp.
891
901
. 10.1007/s11069-016-2224-1
33.
Taraba
,
B.
,
Peter
,
R.
, and
Slovák
,
V.
,
2011
, “
Calorimetric Investigation of Chemical Additives Affecting Oxidation of Coal at Low Temperatures
,”
Fuel Process. Technol.
,
92
(
3
), pp.
712
715
. 10.1016/j.fuproc.2010.12.003
34.
Yang
,
F.
,
Lai
,
Y.
, and
Song
,
Y.
,
2019
, “
Determination of the Influence of Pyrite on Coal Spontaneous Combustion by Thermodynamics Analysis
,”
Process Saf. Environ. Prot.
,
129
(
9
), pp.
163
167
. 10.1016/j.psep.2019.06.023
35.
Benfell
,
K. E.
,
Beamish
,
B. B.
, and
Rodgers
,
K. A.
,
1996
, “
Thermogravimetric Analytical Procedures for Characterizing New Zealand and Eastern Australian Coals
,”
Thermochim. Acta
,
286
(
1
), pp.
67
74
. 10.1016/0040-6031(96)02943-7
36.
Deng
,
J.
,
Yang
,
Y.
,
Zhang
,
Y. N.
,
Liu
,
B.
, and
Shu
,
C. M.
,
2018
, “
Inhibiting Effects of Three Commercial Inhibitors in Spontaneous Coal Combustion
,”
Energy
,
160
(
10
), pp.
1174
1185
. 10.1016/j.energy.2018.07.040
You do not currently have access to this content.