Abstract

Percussive drilling is suitable for the fragmentation of rocks and other similar materials with hard and brittle properties. Research on energy transfer efficiency is of great significance to improving the rock-breaking efficiency of percussive drilling. This paper numerically studied energy transfer efficiency and rock damage in percussive drilling with a multiple-button bit. In this study, the finite element method was used, and the concrete was selected as the research object. Moreover, the damage-plasticity model for concrete and the explicit dynamics solver in abaqus were adopted. Based on the above model, we analyzed the effects of different parameters on the energy transfer efficiency and the concrete damage. Results show that the degree of concrete damage is positively correlated with the output energy, referring to the energy actually absorbed by the concrete, of the percussive system. Under the condition of the same input energy, the energy transfer efficiency decreases as the number of buttons increases. With the increase of impact velocity of the impact hammer, the energy transfer efficiency augments. Multiple repeated impacts will cause the repeated damaging of the concrete, which reduces the energy transfer efficiency.

References

References
1.
Samuel
,
G. R.
,
1996
, “
Percussion Drilling…Is It a Lost Technique? A Review
,”
Permian Basin Oil and Gas Recovery Conference
,
Midland, TX
,
Mar. 27–29
.
2.
Pennington
,
J. V.
,
1954
, “
Rock Failure in Percussion
,”
Petrol. Eng.
,
26
(
5
), pp.
B76
B88
.
3.
Han
,
G.
,
Bruno
,
M.
, and
Lao
,
K.
,
2005
, “
Percussion Drilling in Oil Industry: Review and Rock Failure Modelling
,”
AADE 2005 National Technical Conference and Exhibition
,
Wyndam Greenspoint in Houston, TX
,
Apr. 5–7
.
4.
He
,
W.
,
Hayatdavoudi
,
A.
,
Shi
,
H.
,
Sawant
,
K.
, and
Huang
,
P.
,
2019
, “
A Preliminary Fractal Interpretation of Effects of Grain Size and Grain Shape on Rock Strength
,”
Rock Mech. Rock Eng.
,
52
(
6
), pp.
1745
1765
. 10.1007/s00603-018-1645-4
5.
Wu
,
X.
,
Huang
,
Z.
,
Zhang
,
S.
,
Cheng
,
Z.
,
Li
,
R.
,
Song
,
H.
,
Wen
,
H.
, and
Huang
,
P.
,
2019
, “
Damage Analysis of High-Temperature Rocks Subjected to LN 2 Thermal Shock
,”
Rock Mech. Rock Eng.
,
52
(
8
), pp.
2585
2603
. 10.1007/s00603-018-1711-y
6.
Wang
,
T.
,
Tian
,
S.
,
Li
,
G.
,
Sheng
,
M.
,
Ren
,
W.
,
Liu
,
Q.
, and
Zhang
,
S.
,
2018
, “
Molecular Simulation of CO2/CH4 Competitive Adsorption on Shale Kerogen for CO2 Sequestration and Enhanced gas Recovery
,”
J. Phys. Chem. C
,
122
(
30
), pp.
17009
17018
. 10.1021/acs.jpcc.8b02061
7.
Simon
,
R.
,
1964
, “
Transfer of the Stress Wave Energy in the Drill Steel of a Percussive Drill to the Rock ☆
,”
Int. J. Rock Mech. Mining Sci. Geomech. Abstracts
,
1
(
3
), pp.
397
411
. 10.1016/0148-9062(64)90006-3
8.
Lundberg
,
B.
,
1973
, “
Energy Transfer in Percussive Rock Destruction—I: Comparison of Percussive Methods
,”
Int. J. Rock Mech. Mining Sci. & Geomech. Abst.
,
10
(
5
), pp.
381
399
. 10.1016/0148-9062(73)90024-7
9.
Lundberg
,
B.
,
1973
, “
Energy Transfer in Percussive Rock Destruction—II: Supplement on Hammer Drilling
,”
Int. J. Rock Mech. Mining Sci. & Geomech. Abst.
,
10
(
5
), pp.
401
419
. 10.1016/0148-9062(73)90025-9
10.
Lundberg
,
B.
,
1973
, “
Energy Transfer in Percussive Rock Destruction—III: Stress Wave Transmission Through Joints
,”
Int. J. Rock Mech. Mining Sci. & Geomech. Abst.
,
10
(
5
), pp.
421
435
. 10.1016/0148-9062(73)90026-0
11.
Gupta
,
R.
,
1982
, “
Optimum Design of Wave Transmitting Joints
,”
Wave Motion
,
4
(
1
), pp.
75
83
. 10.1016/0165-2125(82)90015-4
12.
Wu
,
C.
,
1991
, “
An Analytical Study of Percussive Energy Transfer in Hydraulic Rock Drills
,”
Mining Sci. Technol.
,
13
(
1
), pp.
57
68
. 10.1016/0167-9031(91)90254-A
13.
Franca
,
L. F. P.
,
2011
, “
A bit–Rock Interaction Model for Rotary–Percussive Drilling
,”
Int. J. Rock Mech. Mining Sci.
,
48
(
5
), pp.
827
835
. 10.1016/j.ijrmms.2011.05.007
14.
Lundberg
,
B.
, and
Collet
,
P.
,
2010
, “
Optimal Wave with Respect to Efficiency in Percussive Drilling with Integral Drill Steel
,”
Int. J. Impact Eng.
,
37
(
8
), pp.
901
906
. 10.1016/j.ijimpeng.2010.02.001
15.
Lundberg
,
B.
, and
Collet
,
P.
,
2015
, “
Optimal Wave Shape with Respect to Efficiency in Percussive Drilling with Detachable Drill bit
,”
Int. J. Impact Eng.
,
86
, pp.
179
187
. 10.1016/j.ijimpeng.2015.06.021
16.
Miaokang
,
Z.
, and
Johnsson
,
O.
,
1983
,
On Dynamic Failure of Rock in Percussive Drilling, University of Lulea, Sweden
.
17.
Karlsson
,
L. G.
,
1989
, “
Experimental Study of a Percussive Process for Rock Fragmentation
,”
Int. J. Rock Mech. Mining Sci. Geomech. Abstracts
,
26
(
1
), pp.
45
50
. 10.1016/0148-9062(89)90524-X
18.
Liu
,
H. Y.
,
Kou
,
S. Q.
, and
Lindqvist
,
P. A.
,
2008
, “
Numerical Studies on Bit-Rock Fragmentation Mechanisms
,”
Int. J. Geomech.
,
8
(
1
), pp.
45
67
. 10.1061/(ASCE)1532-3641(2008)8:1(45)
19.
Saadati
,
M.
,
Forquin
,
P.
,
Weddfelt
,
K.
,
Larsson
,
P. L.
, and
Hild
,
F.
,
2014
, “
Granite Rock Fragmentation at Percussive Drilling—Experimental and Numerical Investigation
,”
Int. J. Numer. Anal. Methods Geomech.
,
38
(
8
), pp.
828
843
. 10.1002/nag.2235
20.
Saksala
,
T.
,
2013
, “
3D Numerical Modelling of bit–Rock Fracture Mechanisms in Percussive Drilling with a Multiple-Button bit
,”
Int. J. Numer. Anal. Methods Geomech.
,
37
(
3
), pp.
309
324
. 10.1002/nag.2088
21.
Saksala
,
T.
,
Gomon
,
D.
,
Hokka
,
M.
, and
Kuokkala
,
V. T.
,
2014
, “
Numerical and Experimental Study of Percussive Drilling with a Triple-Button bit on Kuru Granite
,”
Int. J. Impact Eng.
,
72
(
4
), pp.
56
66
. 10.1016/j.ijimpeng.2014.05.006
22.
Saksala
,
T.
,
2016
, “
Numerical Study of the Influence of Hydrostatic and Confining Pressure on Percussive Drilling of Hard Rock
,”
Comput. Geotech.
,
76
, pp.
120
128
. 10.1016/j.compgeo.2016.02.021
23.
Song
,
H.
,
Shi
,
H.
,
Ji
,
Z.
,
Wu
,
X.
,
Li
,
G.
,
Zhao
,
H.
,
Wang
,
G.
,
Liu
,
Y.
, and
Hou
,
X.
,
2019
, “
The Percussive Process and Energy Transfer Efficiency of Percussive Drilling With Consideration of Rock Damage
,”
Int. J. Rock Mech. Mining Sci.
,
119
, pp.
1
12
. 10.1016/j.ijrmms.2019.04.012
24.
Sakoguchi
,
K.
,
Minami
,
H.
,
Suzuki
,
S.
, and
Tanaka
,
T.
,
2013
, “
Evaluation of Fracture Resistance of Indirect Composite Resin Crowns by Cyclic Impact Test: Influence of Crown and Abutment Materials
,”
Dental Mater. J.
,
32
(
3
), pp.
433
440
. 10.4012/dmj.2012-313
25.
Salesky
,
W. J.
, and
Payne
,
B. R.
,
1987
, “
Preliminary Field Test Results of Diamond-Enhanced Inserts for Three-Cone Rock Bits
,”
SPE/IADC Drilling Conference
,
New Orleans, LA
,
Mar. 15–18
.
26.
Genikomsou
,
A. S.
, and
Polak
,
M. A.
,
2015
, “
Finite Element Analysis of Punching Shear of Concrete Slabs Using Damaged Plasticity Model in ABAQUS
,”
Eng. Struct.
,
98
, pp.
38
48
. 10.1016/j.engstruct.2015.04.016
27.
Jankowiak
,
T.
, and
Lodygowski
,
T.
,
2005
, “
Identification of Parameters of Concrete Damage Plasticity Constitutive Model
,”
Found. Civ. Environ. Eng.
,
6
(
1
), pp.
53
69
.
28.
Lubliner
,
J.
,
Oliver
,
J.
,
Oller
,
S.
, and
Onate
,
E.
,
1989
, “
A Plastic-Damage Model for Concrete
,”
Int. J. Solids Struct.
,
25
(
3
), pp.
299
326
. 10.1016/0020-7683(89)90050-4
29.
Lee
,
J.
, and
Fenves
,
G. L.
,
1998
, “
Plastic-damage Model for Cyclic Loading of Concrete Structures
,”
J. Eng. Mech.
,
124
(
8
), pp.
892
900
. 10.1061/(ASCE)0733-9399(1998)124:8(892)
30.
Sun
,
J. S.
,
Lee
,
K. H.
, and
Lee
,
H. P.
,
2000
, “
Comparison of Implicit and Explicit Finite Element Methods for Dynamic Problems
,”
J. Mater. Processing Technol.
,
105
(
1–2
), pp.
110
118
. 10.1016/S0924-0136(00)00580-X
31.
Wu
,
J.-Y.
, and
Li
,
J.
,
2006
, “
Elastoplastic Damage Constitutive Model for Concrete Considering Strain Rate Effect Under Dynamic Loading
,”
J.-Tongji Univ.
,
34
(
11
), pp.
1427–1430+1440
.
32.
Cicekli
,
U.
,
Voyiadjis
,
G. Z.
, and
Al-Rub
,
R. K. A.
,
2007
, “
A Plasticity and Anisotropic Damage Model for Plain Concrete
,”
Int. J. Plasticity
,
23
(
10–11
), pp.
1874
1900
. 10.1016/j.ijplas.2007.03.006
You do not currently have access to this content.