Abstract

The present study presents a comprehensive assessment of the impacts of the off-design operation of an air-based high-temperature thermal energy and electricity storage (also known as high-temperature heat and power storage) system on its energy, exergy, economic, and environmental aspects. Here, the effects of load variations on the mass flowrate, pressure ratio, and isentropic efficiency of the turbomachinery are considered to give the most accurate possible picture of the techno-economic aspects of the performance of the system. The results of such an assessment will be extremely useful in achieving the optimal performance of the energy storage system while working parallel with solar and wind power plants. The results prove that the system will present high overall energy and exergy efficiencies of 91.5% and 88.16% when working at full load all the time. These indices, however, will be as low as 67.8% and 65.9% at an annual average operation load of 70% and even further lower to 34% and 32.7% at 40% load, respectively. The payback period of the system will decrease from 11 to 23 years when the operation load falls from 100% to 80%. The environmental effects of such an energy storage unit for an energy market like Denmark (for instance) will be about 6355, 3227, and 823 tonnes of reduced equivalent carbon-dioxide when working at 100%, 70%, and 40% loads, respectively.

References

1.
Liu
,
J.
,
Yin
,
Y.
, and
Yan
,
S.
,
2019
, “
Research on Clean Energy Power Generation-Energy Storage-Energy Using Virtual Enterprise Risk Assessment Based on Fuzzy Analytic Hierarchy Process in China
,”
J. Clean. Prod.
,
236
(
1
), p.
117471
. 10.1016/j.jclepro.2019.06.302
2.
Schüwer
,
D.
,
Krüger
,
C.
,
Merten
,
F.
, and
Nebel
,
A.
,
2016
, “
The Potential of Grid-Orientated Distributed Cogeneration on the Minutes Reserve Market and How Changing the Operating Mode Impacts on CO2 Emissions
,”
Energy
,
110
(
1
), pp.
23
33
. 10.1016/j.energy.2016.02.108
3.
Moallemi
,
A.
,
Arabkoohsar
,
A.
,
Pujatti
,
F. J. P.
,
Valle
,
R. M.
, and
Ismail
,
K. A. R.
,
2018
, “
Non-Uniform Temperature District Heating System With Decentralized Heat Storage Units, a Reliable Solution for Heat Supply
,”
Energy
,
167
(
1
), pp.
80
91
. 10.1016/j.energy.2018.10.188
4.
Nami
,
H.
, and
Arabkoohsar
,
A.
,
2019
, “
Improving the Power Share of Waste-Driven CHP Plants via Parallelization With a Small-Scale Rankine Cycle, a Thermodynamic Analysis
,”
Energy
,
171
(
1
), pp.
27
36
. 10.1016/j.energy.2018.12.168
5.
Zalba
,
B.
,
Marín
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
. 10.1016/S1359-4311(02)00192-8
6.
Benato
,
A.
, and
Stoppato
,
A.
,
2017
, “
Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020904
. 10.1115/1.4038197
7.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
(
1
), pp.
569
596
. 10.1016/j.rser.2014.10.011
8.
Ali Sulaiman Alsagri
,
A. A. A.
, and
Arabkoohsar
,
A.
,
2019
, “
Combination of Subcooled Compressed Air Energy Storage System With an Organic Rankine Cycle for Better Electricity Efficiency, A Thermodynamic Analysis
,”
J. Clean. Prod.
,
1
, p.
118119
. 10.1016/j.jclepro.2019.118119
9.
Chehade
,
S. H. Z.
,
Mansilla
,
C.
, and
Lucchese
,
P.
,
2019
, “
Review and Analysis of Demonstration Projects on Power-to-X Pathways in the World
,”
Int. J. Hydrog. Energy.
,
44
(
51
), pp.
27637
55
.
10.
Yang
,
C.-J.
,
2016
,
Chapter 2—Pumped Hydroelectric Storage
,
TMBT-SE
Letcher
, ed.,
Elsevier
,
Oxford
, pp.
25
38
.
11.
Arabkoohsar
,
A.
,
Ismail
,
K. A. R. A. R.
,
Machado
,
L.
, and
Koury
,
R. N. N. N. N.
,
2016
, “
Energy Consumption Minimization in an Innovative Hybrid Power Production Station by Employing PV and Evacuated Tube Collector Solar Thermal Systems
,”
Renewable Energy
,
93
(
1
), pp.
424
441
. 10.1016/j.renene.2016.03.003
12.
Arabkoohsar
,
A.
,
2020
,
Mechanical Energy Storage Technologies
, 1st ed.,
Elsevier
,
New York
.
13.
Arabkoohsar
,
A.
,
2019
, “
Combined Steam Based High-Temperature Heat and Power Storage With an Organic Rankine Cycle, an Efficient Mechanical Electricity Storage Technology
,”
J. Clean. Prod.
,
247
(
1
), p.
119098
. 10.1016/j.jclepro.2019.119098
14.
Arabkoohsar
,
A.
, and
Andresen
,
G. B. B.
,
2017
, “
Design and Analysis of the Novel Concept of High Temperature Heat and Power Storage
,”
Energy
,
126
(
1
), pp.
21
33
. 10.1016/j.energy.2017.03.001
15.
Arabkoohsar
,
A.
, and
Andresen
,
G. B.
,
2017
, “
Dynamic Energy, Exergy and Market Modeling of a High Temperature Heat and Power Storage System
,”
Energy
,
126
(
1
), pp.
430
443
. 10.1016/j.energy.2017.03.065
16.
Arabkoohsar
,
A.
, and
Andresen
,
G. B.
,
2017
, “
Thermodynamics and Economic Performance Comparison of Three High-Temperature Hot Rock Cavern Based Energy Storage Concepts
,”
Energy
,
132
(
1
), pp.
12
21
. 10.1016/j.energy.2017.05.071
17.
2016
,
Siemens High Temperature Heat and Power Storage Project
.
18.
Arabkoohsar
,
A.
,
2020
, “
Combination of Air-Based High-Temperature Heat and Power Storage System With an Organic Rankine Cycle for an Improved Electricity Efficiency
,”
Appl. Therm. Eng.
,
167
(
1
), p.
114762
. 10.1016/j.applthermaleng.2019.114762
19.
Hussam
,
A. A. W. K.
, and
Rahbari
,
H.
,
2019
, “
Off-Design Operation Analysis of Air-Based High-Temperature Heat and Power Storage
,”
Energy
,
196
(
1
), p.
117149
. 10.1016/j.energy.2020.117149
20.
Arabkoohsar
,
A.
,
2018
, “
An Integrated Subcooled-CAES and Absorption Chiller System for Cogeneration of Cold and Power
,”
Proceedings of International Conference on Smart Energy System Technology
,
Sevilla
.
21.
Li
,
Y.
,
Miao
,
S.
,
Yin
,
B.
,
Yang
,
W.
,
Zhang
,
S.
,
Luo
,
X.
, and
Wang
,
J.
,
2019
, “
A Real-Time Dispatch Model of CAES With Considering the Part-Load Characteristics and the Power Regulation Uncertainty
,”
Int. J. Electr. Power Energy Syst.
,
105
, pp.
179
190
. 10.1016/j.ijepes.2018.08.024
22.
Guo
,
H.
,
Xu
,
Y.
,
Zhang
,
Y.
,
Liang
,
Q.
,
Tang
,
H.
,
Zhang
,
X.
,
Zuo
,
Z.
, and
Chen
,
H.
,
2019
, “
Off-Design Performance and an Optimal Operation Strategy for the Multistage Compression Process in Adiabatic Compressed Air Energy Storage Systems
,”
Appl. Therm. Eng.
,
149
(
1
), pp.
262
274
. 10.1016/j.applthermaleng.2018.12.035
23.
Chen
,
S.
,
Zhu
,
T.
, and
Zhang
,
H.
,
2019
, “
Study on Optimization of Pressure Ratio Distribution in Multistage Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061901
. 10.1115/1.4042400
24.
He
,
W.
,
Wu
,
Y.
,
Peng
,
Y.
,
Zhang
,
Y.
,
Ma
,
C.
, and
Ma
,
G.
,
2013
, “
Influence of Intake Pressure on the Performance of Single Screw Expander Working With Compressed Air
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
662
669
. 10.1016/j.applthermaleng.2012.10.013
25.
Hussam
,
W. K.
,
Rahbari
,
H. R.
, and
Arabkoohsar
,
A.
,
2020
, “
Off-Design Operation Analysis of Air-Based High-Temperature Heat and Power Storage
,”
Energy
,
196
, p.
117149
. 10.1016/j.energy.2020.117149
26.
Zhao
,
P.
,
Gao
,
L.
,
Wang
,
J.
, and
Dai
,
Y.
,
2016
, “
Energy Efficiency Analysis and off-Design Analysis of Two Different Discharge Modes for Compressed Air Energy Storage System Using Axial Turbines
,”
Renewable Energy
,
85
(
1
), pp.
1164
1177
. 10.1016/j.renene.2015.07.095
27.
Duffie
,
J.
,
Beckman
,
W.
, and
Blair
,
N.
,
2020
,
Solar Engineering of Thermal Processes, Photovoltaics and Wind
, https://books.google.com/books?hl=en&lr=&id=4vXPDwAAQBAJ&oi=fnd&pg=PR11&dq=Solar+engineering+of+thermal+processes,+photovoltaics+and+wind&ots=kwnzUXdAOQ&sig=Pwz92uXsI-qRc65XrAromb3hLVk, Accessed 2 November 2020.
28.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Zavattoni
,
S.
,
Barbato
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Packed-Bed Thermal Storage for Concentrated Solar Power—Pilot-Scale Demonstration and Industrial-Scale Design
,”
Sol. Energy
,
86
(
10
), pp.
3084
3098
. 10.1016/j.solener.2012.07.019
29.
Coutier
,
J. P.
, and
Farber
,
E. A.
,
1982
, “
Two Applications of a Numerical Approach of Heat Transfer Process Within Rock Beds
,”
Sol. Energy
,
29
(
6
), pp.
451
462
. 10.1016/0038-092X(82)90053-6
30.
Li
,
G.
,
2016
, “
Sensible Heat Thermal Storage Energy and Exergy Performance Evaluations
,”
Renewable Sustainable Energy Rev.
,
53
(
1
), pp.
897
923
. 10.1016/j.rser.2015.09.006
31.
Chen
,
L. X.
,
Xie
,
M. N.
,
Zhao
,
P. P.
,
Wang
,
F. X.
,
Hu
,
P.
, and
Wang
,
D. X.
,
2018
, “
A Novel Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) System on the Base of Volatile Fluid
,”
Appl. Energy
,
210
(
1
), pp.
198
210
. 10.1016/j.apenergy.2017.11.009
32.
Njoku
,
H. O.
,
Egbuhuzor
,
L. C.
,
Eke
,
M. N.
,
Enibe
,
S. O.
, and
Akinlabi
,
E. A.
,
2019
, “
Combined Pinch and Exergy Evaluation for Fault Analysis in a Steam Power Plant Heat Exchanger Network
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122001
. 10.1115/1.4043746
33.
Nami
,
H.
,
Arabkoohsar
,
A.
, and
Anvari-Moghaddam
,
A.
,
2019
, “
Thermodynamic and Sustainability Analysis of a Municipal Waste-Driven Combined Cooling, Heating and Power (CCHP) Plant
,”
Energy Convers. Manag.
,
201
(
1
), p.
112158
. 10.1016/j.enconman.2019.112158
34.
Penman
,
J.
,
Kruger
,
D.
,
Galbally
,
I. E.
,
Hiraishi
,
T.
,
Nyenzi
,
B.
,
Emmanuel
,
S.
,
Buendia
,
L.
,
Hoppaus
,
R.
,
Martinsen
,
T.
, and
Meijer
,
J.
,
2000
,
Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories
, Vol.
1
,
Intergovernmental Panel on Climate Change
,
Kanagawa, Japan
, p.
1
. http://hdl.handle.net/102.100.100/209351?index=1
35.
Arabkoohsar
,
A.
, and
Andresen
,
G. B. B.
,
2017
, “
Supporting District Heating and Cooling Networks With a Bifunctional Solar Assisted Absorption Chiller
,”
Energy Convers. Manag.
,
148
, pp.
184
196
. 10.1016/j.enconman.2017.06.004
36.
Kravets
,
A.
,
Favale
,
A.
,
Barba
,
J.
, and
Grace
,
D.
,
2020
, “
Single Solution That Reduces Power Plants Heat Rates, Emissions, and Operating Costs
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070916
. 10.1115/1.4046316
37.
Sreekanth
,
K. J.
,
Al Foraih
,
R.
,
Al-Mulla
,
A.
, and
Abdulrahman
,
B.
,
2018
, “
Feasibility Analysis of Energy Storage Technologies in Power Systems for Arid Region
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
011901
. 10.1115/1.4040931
38.
Sadi
,
M.
, and
Arabkoohsar
,
A.
,
2019
, “
Modelling and Analysis of a Hybrid Solar Concentrating-Waste Incineration Power Plant
,”
J. Clean. Prod.
,
216
(
1
), pp.
570
584
. 10.1016/J.JCLEPRO.2018.12.055
39.
The International Renewable Energy Agency (IRENA)
,
n.d.
, https://www.irena.org/
40.
Arabkoohsar
,
A.
,
Machado
,
L.
,
Farzaneh-Gord
,
M.
, and
Koury
,
R. N. N.
,
2015
, “
Thermo-economic Analysis and Sizing of a PV Plant Equipped With a Compressed Air Energy Storage System
,”
Renewable Energy
,
83
(
1
), pp.
491
509
. 10.1016/j.renene.2015.05.005
41.
Arabkoohsar
,
A.
, and
Nami
,
H.
,
2019
, “
Thermodynamic and Economic Analyses of a Hybrid Waste-Driven CHP–ORC Plant With Exhaust Heat Recovery
,”
Energy Convers. Manag.
,
187
(
1
), pp.
512
522
. 10.1016/j.enconman.2019.03.027
You do not currently have access to this content.