Abstract

A conduction model is developed to describe the phase change between the plates of a thermal storage system. The diffusion equation and the associated boundary, initial, and interface conditions are approximated numerically by finite differences and implicit approach with variable time-step. The developed computational code is validated against data and good agreement was found. It is found that the reduction of the surface temperature of the cold plate increases the interface advance rate and reduces the full solidification time. Opposite effects are found due to the increase of the spacing between plates. Further, fractions of Al2O3 nanoparticles are mixed with the phase change material (PCM) to enhance the thermal conductivity of the PCM. For 7% volumetric fraction of Al2O3, the full solidification time and latent heat values decreased by 25.5% and 4.5%, respectively.

References

1.
Prasad
,
D. M. R.
,
Senthilkumar
,
R.
,
Lakshmanarao
,
G.
,
Krishnan
,
S.
, and
Naveen Prasad
,
B. S.
,
2019
, “
A Critical Review on Thermal Energy Storage Materials and Systems for Solar Applications
,”
AIMS Energy
,
7
(
4
), pp.
507
526
.
2.
Arunachalam
,
S.
,
2019
, “
Latent Heat Storage: Container Geometry, Enhancement Techniques, and Applications—A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
050801
.
3.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2018
, “
A Comprehensive Review of Thermal Energy Storage
,”
Sustainability
,
10
(
2
), p.
191
.
4.
Murali
,
G.
,
Mayilsamy
,
K.
, and
Ali
,
B. M.
,
2015
, “
A Review of Latent Heat Thermal Energy Storage Systems
,”
Appl. Mech. Mater.
,
787
, pp.
37
42
.
5.
Elarem
,
R.
,
Alqahtani
,
T.
,
Mellouli
,
S.
,
Askri
,
F.
,
Edacherian
,
A.
,
Vineet
,
T.
,
Badruddin
,
I. A.
, and
Abdelmajid
,
J.
,
2021
, “
A Comprehensive Review of Heat Transfer Intensification Methods for Latent Heat Storage Units
,”
Energy Storage
,
3
(
1
), pp.
1
30
.
6.
Tao
,
Y. B.
, and
He
,
Y. L.
,
2018
, “
A Review of Phase Change Material and Performance Enhancement Method for Latent Heat Storage System
,”
Renewable Sustainable Energy Rev.
,
93
, pp.
245
259
.
7.
Khan
,
Z.
,
Khan
,
Z.
, and
Ghafoor
,
A.
,
2016
, “
A Review of Performance Enhancement of PCM Based Latent Heat Storage System Within the Context of Materials, Thermal Stability and Compatibility
,”
Energy Convers. Manage.
,
115
, pp.
132
158
.
8.
Ismail
,
K. A. R.
,
Alves
,
C. L. F.
, and
Modesto
,
M. S.
,
2001
, “
Numerical and Experimental Study on the Solidification of PCM Around a Vertical Axially Finned Isothermal Cylinder
,”
Appl. Therm. Eng.
,
21
(
1
), pp.
53
77
.
9.
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2011
, “
Fins and Turbulence Promoters for Heat Transfer Enhancement in Latent Heat Storage Systems
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1010
1018
.
10.
Ismail
,
K. A. R.
,
Gonçalves
,
M. M.
, and
Lino
,
F. A. M.
,
2015
, “
A Parametric Study Of Solidification of PCM in an Annulus With Alternating Fins
,”
Int. J. Res. Eng. Adv. Technol.
,
3
(
4
), pp.
188
202
.
11.
Nóbrega
,
C. R. E. S.
,
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2019
, “
Enhancement of Ice Formation Around Vertical Finned Tubes for Cold Storage Applications
,”
Int. J. Refrig.
,
99
, pp.
251
263
.
12.
Nóbrega
,
C. R. E. S.
,
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2020
, “
Solidification Around Axial Finned Tube Submersed in PCM: Modeling and Experiments
,”
J. Energy Storage
,
29
, p.
101438
.
13.
Dandotiya
,
D.
, and
Banker
,
N. D.
,
2021
, “
Energy Efficiency Improvement of a Refrigerator Integrated With Phase Change Material-Based Condenser
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082105
.
14.
Chintakrinda
,
K.
,
Weinstein
,
R. D.
, and
Fleischer
,
A. S.
,
2011
, “
A Direct Comparison of Three Different Material Enhancement Methods on the Transient Thermal Response of Paraffin Phase Change Material Exposed to High Heat Fluxes
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1639
1647
.
15.
Yang
,
X.
,
Wei
,
P.
,
Wang
,
X.
, and
He
,
Y. L.
,
2020
, “
Gradient Design of Pore Parameters on the Melting Process in a Thermal Energy Storage Unit Filled With Open-Cell Metal Foam
,”
Appl. Energy
,
268
, p.
115019
.
16.
Yang
,
X.
,
Niu
,
Z.
,
Bai
,
Q.
,
Li
,
H.
,
Cui
,
X.
, and
He
,
Y. L.
,
2019
, “
Experimental Study on the Solidification Process of Fluid Saturated in Fin-Foam Composites for Cold Storage
,”
Appl. Therm. Eng.
,
161
, p.
114163
.
17.
Yang
,
X.
,
Wei
,
P.
,
Cui
,
X.
,
Jin
,
L.
, and
He
,
Y. L.
,
2019
, “
Thermal Response of Annuli Filled with Metal Foam for Thermal Energy Storage: An Experimental Study
,”
Appl. Energy
,
250
, pp.
1457
1467
.
18.
Zhang
,
Z.
, and
He
,
X.
,
2017
, “
Three-Dimensional Numerical Study on Solid-Liquid Phase Change Within Open-Celled Aluminum Foam With Porosity Gradient
,”
Appl. Therm. Eng.
,
113
, pp.
298
308
.
19.
Costa
,
S.-C.
,
Mahkamov
,
K.
,
Kenisarin
,
M.
,
Ismail
,
M.
,
Lynn
,
K.
,
Halimic
,
E.
, and
Mullen
,
D.
,
2020
, “
Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031203
.
20.
Nnaemeka
,
O. J.
, and
Bibeau
,
E. L.
,
2019
, “
Application of Low-Temperature Phase Change Materials to Enable the Cold Weather Operability of B100 Biodiesel in Diesel Trucks
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062008
.
21.
Studniorz
,
A.
,
Wolf
,
D.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2018
, “
Active Phase Change Material Cold Storage in Off-Grid Telecommunication Base Stations: Potential Assessment of Primary Energy Savings
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112007
.
22.
Archibold
,
A. R.
,
Bhardwaj
,
A.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. L.
,
2016
, “
Comparison of Numerical and Experimental Assessment of a Latent Heat Energy Storage Module for a High-Temperature Phase-Change Material
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052007
.
23.
Sadoun
,
N.
,
Si-Ahmed
,
E. K.
,
Colinet
,
P.
, and
Legrand
,
J.
,
2012
, “
On the Boundary Immobilization and Variable Space Grid Methods for Transient Heat Conduction Problems With Phase Change: Discussion and Refinement
,”
C. R. Mec.
,
340
(
7
), pp.
501
511
.
24.
Mitchell
,
S. L.
, and
Vynnycky
,
M.
,
2009
, “
Finite-Difference Methods with Increased Accuracy and Correct Initialization for One-Dimensional Stefan Problems
,”
Appl. Math. Comput.
,
215
(
4
), pp.
1609
1621
.
25.
Ismail
,
K. A. R.
,
2002
, “Heat Transfer in Phase Change in Simple and Complex Geometries,”
Thermal Energy Storage, Systems and Applications
,
I.
Dincer
, and
M. A.
Rosen
, eds.,
John Wiley & Sons
,
Chichester
, pp.
337
386
.
26.
Hernández-Guerrero
,
A.
,
Aceves
,
S. M.
,
Cabrera-Ruiz
,
E.
, and
Romero-Méndez
,
R.
,
2005
, “
Effect of Cell Geometry on the Freezing and Melting Processes Inside a Thermal Energy Storage Cell
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
95
102
.
27.
Pinelli
,
M.
, and
Piva
,
S.
,
2003
, “
Solid/Liquid Phase Change in Presence of Natural Convection: A Thermal Energy Storage Case Study
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
190
198
.
28.
Heris
,
S. Z.
,
Etemad
,
S. G.
, and
Esfahany
,
M. N.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
529
535
.
29.
Hanif
,
G. S.
, and
Raj
,
J.
,
2017
, “
A Critical Review on Applications of Nano-Fluid as Coolant
,”
Int. J. Eng. Manag. Res.
,
7
(
1
), pp.
304
311
.
30.
Chandrasekar
,
M.
, and
Suresh
,
S.
,
2009
, “
A Review on the Mechanisms of Heat Transport in Nanofluids
,”
Heat Transfer Eng.
,
30
(
14
), pp.
1136
1150
.
31.
Nóbrega
,
C. R. E. S.
,
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2021
, “
Thermal Performance of Bare and Finned Tubes Submersed in Nano-PCM Mixture
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
1
), pp.
1
14
.
32.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2019
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042003
.
33.
Rosen
,
M. A.
,
Dincer
,
I.
, and
Pedinelli
,
N.
,
2000
, “
Thermodynamic Performance of Ice Thermal Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
205
211
.
34.
Ismail
,
K. A. R.
,
Quispe
,
O. C.
, and
Henríquez
,
J. R.
,
1999
, “
A Numerical and Experimental Study on a Parallel Plate Ice Bank
,”
Appl. Therm. Eng.
,
19
(
2
), pp.
163
193
.
35.
Stritih
,
U.
,
2004
, “
An Experimental Study of Enhanced Heat Transfer in Rectangular PCM Thermal Storage
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2841
2847
.
36.
Sharifi
,
N.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of PCM Melting in Enclosures With Horizontally-Finned Internal Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4182
4192
.
37.
Kamkari
,
B.
, and
Shokouhmand
,
H.
,
2014
, “
Experimental Investigation of Phase Change Material Melting in Rectangular Enclosures With Horizontal Partial Fins
,”
Int. J. Heat Mass Transfer
,
78
, pp.
839
851
.
38.
Auriemma
,
M.
, and
Iazzetta
,
A.
,
2016
, “
Numerical Analysis of Melting of Paraffin Wax With Al2O3, ZnO and CuO Nanoparticles in Rectangular Enclosure
,”
Indian J. Sci. Technol.
,
9
(
3
), pp.
1
8
.
39.
Leitão
,
A. B.
,
2020
, “
Parametric Analysis of the Phase Change Process With Nano-PCM in a Storage Unit of Parallel Plate Type
,”
Ph.D. thesis
,
State University of Campinas
,
Campinas, São Paulo
.
40.
Gupta
,
R. S.
, and
Kumar
,
D.
,
1981
, “
Variable Time Step Methods for One-Dimensional Stefan Problem With Mixed Boundary Condition
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
251
259
.
41.
Cho
,
S. H.
, and
Sunderland
,
J. E.
,
1974
, “
Phase Change Problems With Temperature-Dependent Thermal Conductivity
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
214
218
.
42.
Fukusako
,
S.
, and
Yamada
,
M.
,
1993
, “
Recent Advances in Research on Water-Freezing and Ice-Melting Problems
,”
Exp. Therm. Fluid Sci.
,
6
(
1
), pp.
90
105
.
43.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Namburu
,
P. K.
,
2010
, “
Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
613
621
.
44.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.
45.
Prud’homme
,
M.
,
Long Nguyen
,
D.
, and
Hung Nguyen
,
T.
,
1989
, “
A Heat Transfer Analysis for Solidification of Slabs, Cylinders, and Spheres
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
699
705
.
46.
Cho
,
S. H.
, and
Sunderland
,
J. E.
,
1969
, “
Heat-Conduction Problems With Melting or Freezing
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
421
426
.
You do not currently have access to this content.