Abstract

The generation of the electric power through magnetohydrodynamic (MHD) is one of the most advanced high-temperature energy conversions as it directly turns the heat into electricity. In this study, a quadruple cycle with a MHD generator was considered as the upstream cycle, a Brayton cycle was taken as the middle cycle through heating, and an organic Rankine cycle and steam cycle were regarded as the downstream cycles using the heat loss of the MHD generator and gas turbine, respectively. Energy, exergy, exergoeconomic, exergoenvironmental, emergoeconomic, and emergoenvironmental (6E) analyses were done in the proposed system simultaneously for the first time. In addition, advanced exergy, exergoeconomic, and exergoenvironmental analyses were performed for the proposed system to show the effect of irreversibility accurately and deeply. Despite the slight difference between the results of the emergoeconomic and emergoenvironmental sector with the exergoeconomic and exergoenvironmental sector, the obtained qualitative results were very similar showing that the emergoeconomic and emergoenvironmental analyses can be proper alternatives to the conventional exergoeconomic and exergoenvironmental analyses. The temperature of the heat source is one of the most important criteria for fluid selection in the organic Rankine cycles. Five organic fluids were selected and evaluated according to the desired hot source temperature for the Rankine organic cycle (262 °C). The results showed that the R141b with energy and efficiency of 15.25 and 58.05%, respectively, had the best thermodynamic and exergy performance with the least amount of total costs using this fluid.

References

1.
Harkins
,
H. L.
,
1983
, “
Combined Cycles—Alternative for Process Steam Systems
,”
ASME J. Energy Resour. Technol.
,
105
(
3
), pp.
396
400
. 10.1115/1.3230936
2.
Morandin
,
M.
,
Toffolo
,
A.
, and
Lazzaretto
,
A.
,
2013
, “
Superimposition of Elementary Thermodynamic Cycles and Separation of the Heat Transfer Section in Energy Systems Analysis
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021602
. 10.1115/1.4023099
3.
Ameri
,
M.
,
Ahmadi
,
P.
, and
Khanmohammadi
,
S.
,
2008
, “
Exergy Analysis of a 420 MW Combined Cycle Power Plant
,”
Int. J. Energy Res.
,
32
(
2
), pp.
175
183
. 10.1002/er.1351
4.
Messerle
,
H. K.
,
1995
,
Magnetohydrodynamic Electrical Power Generation
,
Wiley
,
Chichester, NY
, Energy Engineering Learning Package, No. xvii, p.
191
.
5.
Chen
,
J.
,
Tyagi
,
S.
,
Kaushik
,
S.
,
Tiwari
,
V.
, and
Wu
,
F.
,
2005
, “
Effects of Several Major Irreversibilities on the Thermodynamic Performance of a Regenerative MHD Power Cycle
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
103
118
. 10.1115/1.1879046
6.
Kribus
,
A.
,
2002
, “
A High-Efficiency Triple Cycle for Solar Power Generation
,”
Sol. Energy
,
72
(
1
), pp.
1
11
. 10.1016/S0038-092X(01)00070-6
7.
Nimvari
,
M. E.
,
Hadidi
,
A.
,
Jafarian
,
A.
, and
Garjasi
,
N.
,
2011
, “Analysis of Triple Combined Cycle With MHD Generator as a Topping Cycle,”
Tehran, Iran
,
Oct. 18–19
, IEEE, pp.
1
5
.
8.
Kayukawa
,
N.
,
2000
, “
Comparisons of MHD Topping Combined Power Generation Systems
,”
Energy Convers. Manage.
,
41
(
18
), pp.
1953
1974
. 10.1016/S0196-8904(00)00031-5
9.
Kayukawa
,
N.
,
2004
, “
Open-Cycle Magnetohydrodynamic Electrical Power Generation: A Review and Future Perspectives
,”
Prog. Energy Combust. Sci.
,
30
(
1
), pp.
33
60
. 10.1016/j.pecs.2003.08.003
10.
Ramaprabhu
,
V.
, and
Roy
,
R.
,
2004
, “
A Computational Model of a Combined Cycle Power Generation Unit
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
231
240
. 10.1115/1.1789523
11.
Khoshgoftar Manesh
,
M. H.
, and
Babaelahi
,
M.
,
2017
, “
Thermoeconomic and Environmental Optimization of a 160 MW Combined Cycle Power Plant by MOEA
,”
Gas Process. J.
,
5
(
2
), pp.
79
96
.
12.
Khoshgoftar Manesh
,
M. H.
, and
Rosen
,
M.
,
2018
, “
Combined Cycle and Steam Gas-Fired Power Plant Analysis Through Exergoeconomic and Extended Combined Pinch and Exergy Methods
,”
J. Energy Eng.
,
144
(
2
), p.
04018010
. 10.1061/(ASCE)EY.1943-7897.0000506
13.
Esmaeilzadehazimi
,
M. A.
,
Khoshgoftar Manesh
,
M. H.
,
Heleyleh
,
B.
, and
Modabbaer
,
H.
,
2019
, “
4E Analysis of Integrated MHD-Combined Cycle
,”
Int. J. Thermodyn.
,
22
(
4
), pp.
219
228
. 10.5541/ijot.570540
14.
Rosa
,
R. J.
,
1987
,
Magnetohydrodynamic Energy Conversion
,
Hemisphere Publishing
,
New York
.
15.
Ibrahim
,
T.
, and
Rahman
,
P. D. M. M.
,
2015
, “
Optimum Performance Improvements of the Combined Cycle Based on an Intercooler-Reheated Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
061601
. 10.1115/1.4030447
16.
Pasinato
,
H.
,
2019
, “
Working Fluid Dependence on Source Temperature for Organic Rankine Cycles (ORCs)
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012103
. 10.1115/1.4045383
17.
Gimba
,
I.
,
Abdulkareem
,
A.
,
Jimoh
,
A.
, and
Afolabi
,
A.
,
2016
, “
Theoretical Energy and Exergy Analyses of Proton Exchange Membrane Fuel Cell by Computer Simulation
,”
J. Appl. Chem.
,
2016
, pp.
1
15
. 10.1155/2016/2684919
18.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1996
, “Thermal Design and Optimization” (in English),
John Wiley and Sons, AP - Technology & Engineering
, pp.
1
560
.
19.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
. 10.1115/1.4007659
20.
Jin
,
H.
,
Ishida
,
M.
,
Kobayashi
,
M.
, and
Nunokawa
,
M.
,
1997
, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
250
256
. 10.1115/1.2794998
21.
Tsatsaronis
,
G.
,
Lin
,
L.
, and
Pisa
,
J.
,
1993
, “
Exergy Costing in Exergoeconomics
,”
ASME J. Energy Resour. Technol.
,
115
(
1
), pp.
9
16
. 10.1115/1.2905974
22.
Petrakopoulou
,
F.
, and
Morozyuk
,
T.
,
in press
, “
Assessment of a Power Plant With CO2 Capture Using an Advanced Exergoenvironmental Analysis
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022001
. https://dx.doi.org/10.1115/1.4025715
23.
Mehrpooya
,
M.
,
Ashouri
,
M.
, and
Mohammadi
,
A.
,
2017
, “
Thermoeconomic Analysis and Optimization of a Regenerative Two-Stage Organic Rankine Cycle Coupled With Liquefied Natural Gas and Solar Energy
,”
Energy
,
126
, pp.
899
914
. 10.1016/j.energy.2017.03.064
24.
Dincer
,
I.
,
Rosen
,
M. A.
, and
Ahmadi
,
P.
,
2017
, “Optimization of Energy Systems,” John Wiley & Sons.
25.
Boyaghchi
,
F. A.
, and
Heidarnejad
,
P.
,
2015
, “
Thermoeconomic Assessment and Multi Objective Optimization of a Solar Micro CCHP Based on Organic Rankine Cycle for Domestic Application
,”
Energy Convers. Manage.
,
97
, pp.
224
234
. 10.1016/j.enconman.2015.03.036
26.
Ghaebi
,
H.
,
Saidi
,
M. H.
, and
Ahmadi
,
P.
,
2012
, “
Exergoeconomic Optimization of a Trigeneration System for Heating, Cooling and Power Production Purpose Based on TRR Method and Using Evolutionary Algorithm
,”
Appl. Therm. Eng.
,
36
, pp.
113
125
. 10.1016/j.applthermaleng.2011.11.069
27.
Sadeghi
,
M.
,
Chitsaz
,
A.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M.
,
2015
, “
Thermoeconomic Optimization Using an Evolutionary Algorithm of a Trigeneration System Driven by a Solid Oxide Fuel Cell
,”
Energy
,
89
, pp.
191
204
. 10.1016/j.energy.2015.07.067
28.
Sheindlin
,
A. E.
,
Jackson
,
W. D.
,
Brzozowski
,
W. S.
, and
Rietjens
,
L. H. T.
,
1979
, “
Magnetohydrodynamic Power Generation
,”
Nat. Resour. Forum
,
3
(
2
), pp.
133
145
. 10.1111/j.1477-8947.1979.tb00402.x
30.
Gadalla
,
M.
,
Olujić
,
Ž.
,
Jobson
,
M.
, and
Smith
,
R.
,
2006
, “
Estimation and Reduction of CO2 Emissions From Crude Oil Distillation Units
,”
Energy
,
31
(
13
), pp.
2398
2408
. 10.1016/j.energy.2005.10.030
31.
“U.S. Environmental Protection Agency—Technology Transfer Network—Clearinghouse for Inventories and Emission Factors,” www3.epa.gov/ttnchie1/ap42/
32.
Aghbashlo
,
M.
, and
Rosen
,
M. A.
,
2018
, “
Consolidating Exergoeconomic and Exergoenvironmental Analyses Using the Emergy Concept for Better Understanding Energy Conversion Systems
,”
J. Cleaner Prod.
,
172
, pp.
696
708
. 10.1016/j.jclepro.2017.10.205
33.
Rafat
,
E.
,
Babaelahi
,
M.
, and
Mofidipour
,
E.
,
2019
, “
Sustainability Analysis of Low Temperature Solar-Driven Kalina Power Plant Using Emergy Concept
,”
Int. J. Thermodyn.
,
22
(
3
), pp.
118
126
. 10.5541/ijot.552938
34.
Baral
,
A.
, and
Bakshi
,
B.
,
2010
, “
Emergy Analysis Using US Economic Input–Output Models With Applications to Life Cycles of Gasoline and Corn Ethanol
,”
Ecol. Modell.
,
221
(
15
), pp.
1807
1818
. 10.1016/j.ecolmodel.2010.04.010
35.
Morozyuk
,
T.
,
2008
, “
A General Exergy-Based Method for Combining a Cost Analysis With an Environmental Impact Analysis: Part I—Theoretical Development
,”
ASME 2008 International Mechanical Engineering Congress and Exposition, Volume 8: Energy Systems: Analysis, Thermodynamics and Sustainability; Sustainable Products and Processes
, Boston, MA, Oct. 31–Nov. 6, Paper No: IMECE2008-67218, pp.
453
462
. https://doi.org/10.1115/IMECE2008-67218
36.
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2011
, “Exergy-Based Methods for Computer-Aided Design of Energy Conversion Systems,”
Computer Aided Chemical Engineering
, Vol.
29
,
E. N.
Pistikopoulos
,
M. C.
Georgiadis
, and
A. C.
Kokossis
, eds.,
Elsevier
,
New York
, pp.
1949
1953
.
37.
Kelly
,
S.
, and
Morozyuk
,
T.
,
2009
, “
Advanced Exergetic Analysis: Approaches for Splitting the Exergy Destruction Into Endogenous and Exogenous Parts
,”
Energy
,
34
(
3
), pp.
384
391
. 10.1016/j.energy.2008.12.007
38.
Tsatsaronis
,
G.
,
Kelly
,
S. O.
, and
Morosuk
,
T. V.
,
2006
, “
Endogenous and Exogenous Exergy Destruction in Thermal Systems
,”
ASME 2006 International Mechanical Engineering Congress and Exposition
, Advanced Energy Systems,
Chicago, IL
,
Nov. 5–10
, pp.
311
317
.
39.
Morozyuk
,
T.
,
2007
, “
Advanced Exergoeconomic Evaluation and Its Application to Compression Refrigeration Machines
,”
ASME 2007 International Mechanical Engineering Congress and Exposition, Volume 6: Energy Systems: Analysis
, Thermodynamics and Sustainability Seattle, WA, Nov. 11–15, Paper No: IMECE2007-41202, pp.
859
868
. 10.1115/IMECE2007-41202
You do not currently have access to this content.