Abstract

The use of machine learning (ML)-based surrogate models is a promising technique to significantly accelerate simulation-driven design optimization of internal combustion (IC) engines, due to the high computational cost of running computational fluid dynamics (CFD) simulations. However, training the ML models requires hyperparameter selection, which is often done using trial-and-error and domain expertise. Another challenge is that the data required to train these models are often unknown a priori. In this work, we present an automated hyperparameter selection technique coupled with an active learning approach to address these challenges. The technique presented in this study involves the use of a Bayesian approach to optimize the hyperparameters of the base learners that make up a super learner model. In addition to performing hyperparameter optimization (HPO), an active learning approach is employed, where the process of data generation using simulations, ML training, and surrogate optimization is performed repeatedly to refine the solution in the vicinity of the predicted optimum. The proposed approach is applied to the optimization of a compression ignition engine with control parameters relating to fuel injection, in-cylinder flow, and thermodynamic conditions. It is demonstrated that by automatically selecting the best values of the hyperparameters, a 1.6% improvement in merit value is obtained, compared to an improvement of 1.0% with default hyperparameters. Overall, the framework introduced in this study reduces the need for technical expertise in training ML models for optimization while also reducing the number of simulations needed for performing surrogate-based design optimization.

References

1.
Broatch
,
A.
,
Novella
,
R.
,
Gomez-Soriano
,
J.
,
Pal
,
P.
, and
Som
,
S.
,
2018
, “
Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control
,”
SAE Int. J. Engines
,
11
(
6
), pp.
625
642
. 10.4271/2018-01-0193
2.
Ge
,
H.-W.
,
Shi
,
Y.
,
Reitz
,
R. D.
,
Wickman
,
D. D.
, and
Willems
,
W.
,
2009
, “
Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling
,”
SAE Int. J. Engines
,
2
(
1
), pp.
691
713
. 10.4271/2009-01-0715
3.
Hiroyasu
,
T.
,
Miki
,
M.
,
Kamiura
,
J.
,
Watanabe
,
S.
, and
Hiroyasu
,
H.
,
2002
, “
Multi-Objective Optimization of Diesel Engine Emissions and Fuel Economy Using Genetic Algorithms and Phenomenological Model
,”
No. 0148-7191, SAE Technical Paper
.
4.
Magnier
,
L.
, and
Haghighat
,
F.
,
2010
, “
Multiobjective Optimization of Building Design Using TRNSYS Simulations, Genetic Algorithm, and Artificial Neural Network
,”
Build. Environ.
,
45
(
3
), pp.
739
746
. 10.1016/j.buildenv.2009.08.016
5.
Wickman
,
D. D.
,
Senecal
,
P. K.
, and
Reitz
,
R. D.
,
2001
, “
Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling
,”
SAE Trans.
, pp.
487
507
.
6.
Lu
,
Y.
,
Li
,
J.
,
Xiong
,
L.
, and
Li
,
B.
,
2019
, “
Simulation and Experimental Study of a Diesel Engine Based on an Electro-Hydraulic FVVA System Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032204
. 10.1115/1.4044561
7.
Hamel
,
J. M.
,
Allphin
,
D.
, and
Elroy
,
J.
,
2018
, “
Multi-Objective Optimization Model Development to Support Sizing Decisions for a Novel Reciprocating Steam Engine Technology
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072204
. 10.1115/1.4039611
8.
Probst
,
D. M.
,
Senecal
,
P. K.
,
Chien
,
P. Z.
,
Xu
,
M. X.
, and
Leyde
,
B. P.
,
2018
, “
Optimization and Uncertainty Analysis of a Diesel Engine Operating Point Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102806
. 10.1115/1.4040006
9.
Pei
,
Y.
,
Pal
,
P.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
,
Futterer
,
C.
,
Brenner
,
M.
,
Probst
,
D.
, and
Som
,
S.
,
2019
, “
CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer
,”
SAE Int. J. Adv. Curr. Pract. Mob.
,
1
, pp.
166
179
.
10.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2020
, “
Multi-Objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
. 10.1115/1.4047974
11.
Marri
,
V. B.
,
Madhu Murthy
,
K.
, and
Amba Prasad Rao
,
G.
,
2020
, “
Optimization of Operating Parameters of an Off-Road Automotive Diesel Engine Running at Highway Drive Conditions Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
, pp.
1
48
.
12.
Bertram
,
A. M.
, and
Kong
,
S.-C.
,
2019
, “
Computational Optimization of a Diesel Engine Calibration Using a Novel SVM-PSO Method
,”
No. 0148-7191, SAE Technical Paper
.
13.
Karra
,
P.
, and
Kong
,
S.-C.
,
2010
, “
Application of Particle Swarm Optimization for Diesel Engine Performance Optimization
,”
No. 0148-7191, SAE Technical Paper
.
14.
Zhang
,
Q.
,
Ogren
,
R. M.
, and
Kong
,
S.-C.
,
2017
, “
Application of Improved Artificial Bee Colony Algorithm to the Parameter Optimization of a Diesel Engine With Pilot Fuel Injections
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112801
. 10.1115/1.4036766
15.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
.
16.
Karaboga
,
D.
, and
Basturk
,
B.
,
2007
, “
A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm
,”
J. Global Optim.
,
39
(
3
), pp.
459
471
. 10.1007/s10898-007-9149-x
17.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Exploring the Potential of Machine Learning in Reducing the Computational Time/Expense and Improving the Reliability of Engine Optimization Studies
,”
Int. J. Engine Res.
,
21
(
7
), pp.
1251
1270
.
18.
Owoyele
,
O.
, and
Pal
,
P.
,
2020
, “
A Novel Active Optimization Approach for Rapid and Efficient Design Space Exploration Using Ensemble Machine Learning
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032307
. 10.1115/1.4049178
19.
Owoyele
,
O.
, and
Pal
,
P.
,
2021
, “
A Novel Machine Learning-Based Optimization Algorithm (ActivO) for Accelerating Simulation-Driven Engine Design
,”
Appl. Energy
,
285
, p.
116455
. 10.1016/j.apenergy.2021.116455
20.
Moiz
,
A. A.
,
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Som
,
S.
, and
Kodavasal
,
J.
,
2018
, “
A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing
,”
SAE Int. J. Commer. Veh.
,
11
(
5
), pp.
291
306
. 10.4271/2018-01-0190
21.
Badra
,
J.
,
Sim
,
J.
,
Pei
,
Y.
,
Viollet
,
Y.
,
Pal
,
P.
,
Futterer
,
C.
,
Brenner
,
M.
,
Som
,
S.
,
Farooq
,
A.
, and
Chang
,
J.
,
2020
, “
Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning
,”
No. 0148-7191, SAE Technical Paper
.
22.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Brenner
,
M.
, and
Farooq
,
A.
,
2020
, “
Engine Combustion System Optimization Using CFD and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
. 10.1115/1.4047978
23.
Probst
,
D. M.
,
Raju
,
M.
,
Senecal
,
P. K.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Som
,
S.
,
Moiz
,
A. A.
, and
Pei
,
Y.
,
2019
, “
Evaluating Optimization Strategies for Engine Simulations Using Machine Learning Emulators
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091011
. 10.1115/1.4043964
24.
Van der Laan
,
M. J.
,
Polley
,
E. C.
, and
Hubbard
,
A. E.
,
2007
, “
Super Learner
,”
Stat. Appl. Genet. Mol. Biol.
,
6
(
1
). 10.2202/1544-6115.1309
25.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
, and
Dubourg
,
V.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
Oct
), pp.
2825
2830
.
26.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
, and
van der Walt
,
S. J.
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
. 10.1038/s41592-019-0686-2
27.
Van Der Walt
,
S.
,
Colbert
,
S. C.
, and
Varoquaux
,
G.
,
2011
, “
The NumPy Array: A Structure for Efficient Numerical Computation
,”
Comput. Sci. Eng.
,
13
(
2
), pp.
22
30
. 10.1109/MCSE.2011.37
28.
Drucker
,
H.
,
Burges
,
C. J.
,
Kaufman
,
L.
,
Smola
,
A. J.
, and
Vapnik
,
V.
,
1996
, “
Support Vector Regression Machines
,”
Proc. Adv. Neural Inform. Process. Syst.
, pp.
155
161
.
29.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd acm Sigkdd International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, pp.
785
794
.
30.
Mockus
,
J.
,
2012
,
Bayesian Approach to Global Optimization: Theory and Applications
,
Springer Science & Business Media
,
The Netherlands
.
31.
Močkus
,
J.
,
1974
, “
On Bayesian Methods for Seeking the Extremum
,”
Proceedings of the Optimization Techniques IFIP Technical Conference
,
Novosibirsk, Russia
,
July 1–7
,
Springer
, pp.
400
404
.
32.
Nogueira
,
F.
,
2014
, “
Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python
.”
33.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2019
,
CONVERGE 2.3
,
Convergent Science
,
Madison, WI
.
34.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
, and
Som
,
S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp.
56
68
. 10.4271/2017-01-0578
You do not currently have access to this content.