Abstract

To investigate the effects of fuel discharge rate and initial fuel temperature on flame pulsation characteristics of vertical spill fire, a series of experiments under continuous leakage conditions are conducted on a specially designed experimental setup, for which transformer oil is selected as the fuel. Results show that the vertical spill fire burning area can be divided into three parts. Both the main flame and the flash flame are involved in the flame pulsation behavior, and the essence of the flame pulsation of the vertical spill fire is the periodic alternation of the diffusion flame and the premixed flame. Flame pulsation frequency shows a linear negative correlation with the fuel leakage rate, it decreases from 3.56 Hz (4.98 ml m−1s−1) to 2.439 Hz (15.93 ml m−1s−1), and it has a positive correlation with the initial fuel temperature. As the fuel discharge rate increases, the pulsation amplitude increases while the flame transient spread rate decreases, both of them have no significant correlation with the initial fuel temperature. The ratio of the average flame pulsation amplitude to the maximum pulsation amplitude is between 0.57 and 0.76. The flame transient spread rate shows a negative correlation with the fuel discharge rate, the maximum flame spread velocity reaches 3.17 m/s and 2.85 m/s in the growing phase and shrinking phase respectively. Due to the entrainment effect of the flame plume, the flame transient spread rate in the shrinking phase is higher than that in the growing phase. Analyzed the diffusion process of fuel vapor and the heat transfer mechanism of vertical spill fire, the control of fuel leakage rate and initial temperature on the flame pulsation characteristics is mainly manifested in its influence on the fuel evaporation and diffusion process and the length of preheating area. This work provides data supplement on the flame spread of liquid fuel spill fire.

References

1.
Nishino
,
T.
, and
Takagi
,
Y.
,
2020
, “
Numerical Analysis of Tsunami-Triggered Oil Spill Fires From Petrochemical Industrial Complexes in Osaka Bay, Japan, for Thermal Radiation Hazard Assessment
,”
Int. J. Disaster Risk. Red.
,
42
, p.
101352
.
2.
Oka
,
H.
, and
Ota
,
S.
,
2008
, “
Evaluation of Consequence Assessment Methods for Pool Fires on Water Involving Large Spills From Liquefied Natural Gas Carriers
,”
J. Mar. Sci. Technol.
,
13
(
2
), pp.
178
188
.
3.
Li
,
M.
,
Lu
,
S.
,
Chen
,
R.
, and
Wang
,
C.
,
2017
, “
Pulsating Behaviors of Flame Spread Across n-Butanol Fuel Surface
,”
Appl. Therm. Eng.
,
112
, pp.
1445
1451
.
4.
Gagnon
,
L.
,
Carey
,
V. P.
, and
Fernandez-Pello
,
C.
,
2021
, “
Using an Artificial Neural Network to Predict Flame Spread Across Electrical Wires
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092305
.
5.
Guo
,
J.
,
Lu
,
S.
,
Zhou
,
J.
,
Li
,
M.
, and
Wang
,
C.
,
2012
, “
Experimental Study of Flame Spread Over Oil Floating on Water
,”
Chin. Sci. Bull.
,
57
(
9
), pp.
1083
1087
.
6.
Akita
,
K.
,
1973
, “
Some Problems of Flame Spread Along a Liquid Surface
,”
Symp. Int. Combust.
,
14
(
1
), pp.
1075
1083
.
7.
Ji
,
J.
,
Lin
,
S.
,
Zhao
,
C.
,
Li
,
K.
, and
Gao
,
Z.
,
2016
, “
Experimental Study on Initial Temperature Influence on Flame Spread Characteristics of Diesel and Gasoline–Diesel Blends
,”
Fuel
,
178
, pp.
283
289
.
8.
Zhou
,
J.
,
Chen
,
G.
,
Li
,
P.
,
Chen
,
B.
,
Wang
,
C.
, and
Lu
,
S.
,
2010
, “
Analysis of Flame Spread Over Aviation Kerosene
,”
Chin. Sci. Bull.
,
55
(
17
), pp.
1822
1827
.
9.
Ali
,
S. M.
,
Raghavan
,
V.
,
Velusamy
,
K.
, and
Tiwari
,
S.
,
2012
, “
A Numerical Study of Concurrent Flame Propagation Over Methanol Pool Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
4
), p.
041202
.
10.
Degroote
,
E.
, and
Ybarra
,
P.
,
2005
, “
Flame Propagation Over Liquid Alcohols—Part I. Experimental Results
,”
J. Therm. Anal. Calorim.
,
80
(
3
), pp.
541
548
.
11.
Korzhavin
,
A. A.
,
Kakutkina
,
N. A.
, and
Namyatov
,
I. G.
,
2010
, “
Flame Spread Over Fuel Films in Opposed Gas Flow
,”
Combust. Explos. Shock Waves
,
46
(
3
), pp.
273
278
.
12.
Zhao
,
J.
,
Zhu
,
H.
,
Huang
,
H.
,
Zhong
,
M.
, and
Yang
,
R.
,
2019
, “
Experimental Study on the Liquid Layer Spread and Burning Behaviors of Continuous Heptane Spill Fires
,”
Process Saf. Environ. Protect
,
122
(
B
), pp.
320
327
.
13.
Okamoto
,
K.
,
Nakagawa
,
M.
,
Ichikawa
,
T.
,
Hagiwara
,
T.
, and
Honma
,
M.
,
2021
, “
Induced Fire Hazards by Gasoline Spills
,”
Fire Saf. J.
,
120
(
SI
), p.
103112
.
14.
Zhao
,
J.
,
Huang
,
H.
,
Grunde
,
J.
,
Zhong
,
M.
, and
Li
,
Y.
,
2017
, “
Spread and Burning Behavior of Continuous Spill Fires
,”
Fire. Safe. J.
,
91
, pp.
347
354
.
15.
Li
,
H.
,
Liu
,
H.
,
Liu
,
J.
,
Ge
,
J.
, and
Tang
,
F.
,
2021
, “
Spread and Burning Characteristics of Continuous Spill Fires in a Tunnel
,”
Tunn. Undergr. Space. Technol.
,
109
, p.
103754
.
16.
Konishi
,
T.
,
Ito
,
A.
,
Kudou
,
Y.
, and
Saito
,
K.
,
2002
, “
The Role of a Flame-Induced Liquid Surface Wave on Pulsating Flame Spread
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
267
272
.
17.
Ito
,
A.
,
Narumi
,
A.
,
Konishi
,
T.
,
Tashtoush
,
G.
,
Saito
,
K.
, and
Cremers
,
C. J.
,
1999
, “
The Measurement of Transient Two-Dimensional Profiles of Velocity and Fuel Concentration Over Liquids
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
2
), pp.
413
419
.
18.
Li
,
L.
,
Guo
,
X.
,
Lu
,
R.
,
Chen
,
P.
, and
Shi
,
C.
,
2022
, “
Experimental Study on Horizontal Fire Spread Characteristics of Transformer Oil
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012107
.
19.
Guo
,
J.
,
Lu
,
S.
, and
Wang
,
C.
,
2014
, “
Effect of Fuel Depth on Flame Spread Over Aviation Kerosene
,”
J. Fire Sci.
,
32
(
1
), pp.
43
51
.
20.
Li
,
M.
,
Lu
,
S.
,
Guo
,
J.
,
Chen
,
R.
, and
Tsui
,
K.
,
2015
, “
Initial Fuel Temperature Effects on Flame Spread Over Aviation Kerosene in Low- and High-Altitude Environments
,”
Fire Technol.
,
51
(
3
), pp.
707
721
.
21.
Gao
,
Z.
,
Lin
,
S.
,
Ji
,
J.
, and
Li
,
M.
,
2019
, “
An Experimental Study on Combustion Performance and Flame Spread Characteristics Over Liquid Diesel and Ethanol-Diesel Blended Fuel
,”
Energy
,
170
, pp.
349
355
.
22.
Li
,
L.
,
Zhai
,
X.
,
Wang
,
J.
,
Chen
,
P.
, and
Shi
,
C.
,
2021
, “
Experimental Study on Vertical Spill Fire Characteristics of Transformer Oil Under Continuous Spill Condition
,”
Process Saf. Environ. Protect
,
156
, pp.
521
530
.
23.
Ebrahimnia-Bajestan
,
E.
,
Tiznobaik
,
H.
,
Gheorghe
,
P.
, and
Arjmand
,
M.
,
2021
, “
Thermal Behavior of Power Transformers Filled With Waste Vegetable Oil-Based Biodiesel Under Dynamic Load
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090906
.
24.
Li
,
M.
,
Wang
,
C.
,
Yang
,
S.
, and
Zhang
,
J.
,
2017
, “
Precursor Flame Characteristics of Flame Spread Over Aviation Fuel
,”
Appl. Therm. Eng.
,
117
, pp.
178
184
.
25.
M
,
L. I.
,
Qiuting
,
L.
,
Changjian
,
W.
, and
Yang
,
P.
,
2020
, “
Study on Unsteady Combustion Behavior of Stationary Spilling Fire of n-Butanol Under Condition of Variable Slope
,”
J. Saf. Sci. Technol.
,
16
(
12
), pp.
5
10
.
26.
Miller
,
F. J.
, and
Ross
,
H. D.
,
1992
, “
Further Observations of Flame Spread Over Laboratory-Scale Alcohol Pools
,”
Symp. Int. Combust.
,
24
(
1
), pp.
1703
1711
.
27.
Ross
,
H. D.
, and
Miller
,
F. J.
,
1998
, “
Flame Spread Across Liquid Pools With Very Low-Speed Opposed or Concurrent Airflow
,”
Symp. Int. Combust.
,
27
(
2
), pp.
2723
2729
.
28.
Zhu
,
F.
, and
Li
,
K.
,
2011
, “
Numerical Modeling of Heat and Moisture Through Wet Cotton Fabric Using the Method of Chemical Thermodynamic Law Under Simulated Fire
,”
Fire Technol.
,
47
(
3
), pp.
801
819
.
29.
Ditch
,
B. D.
,
de Ris
,
J. L.
,
Blanchat
,
T. K.
,
Chaos
,
M.
, Jr.
,
Bill
,
R. G.
, and
Dorofeev
,
S. B.
,
2013
, “
Pool Fires—An Empirical Correlation
,”
Combust. Flame
,
160
(
12
), pp.
2964
2974
.
You do not currently have access to this content.