Abstract

Deep drilling and tunnel excavation rely on new rock-breaking technology. Currently, there is a lack of research on the micro mechanism of high-voltage electro-pulse boring (EPB). The design structure of the electrode bit is diverse, and there is still a great room for improving the service life of the electrode bit, the quality of the borehole wall, and the energy loss in the drilling process. Based on this, first, the electrode bits in the EPB system were improved, and the EPB tests was carried out. The three-dimensional (3D) reconstruction cloud graphs of broken granite were obtained, and the drilling with a diameter of 60 mm in granite and red sandstone was actualized. Compared with the drilling effect before improvement, the reliability and the service life of electrode bits and test devices were verified. Second, the high-voltage EPB experiments with different electric parameters were carried out, and the complete drilling with a diameter of 100 mm in red sandstone was realized. Finally, the composition and the microstructure of rock were obtained with Fourier-transform infrared (FT-IR) spectrometer, scanning electron microscope (SEM), and energy-dispersive spectrometer (EDS) before and after EPB. It was concluded that the prefragmentation could be realized by EPB. The rock mass near the discharge channel underwent an oxidation reaction in addition to physical damage and formed new oxidation products. The EPB experimental study provided practical guidance for the design of the electrical bits and the improvement of the rock-breaking efficiency.

References

1.
Ahmed
,
S.
, and
Salehi
,
S.
,
2021
, “
Failure Mechanisms of the Wellbore Mechanical Barrier Systems: Implications for Well Integrity
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073007
.
2.
Cao
,
Q.
,
Shi
,
H.
,
Xu
,
W.
,
Xiong
,
C.
,
Yang
,
Z.
, and
Ji
,
R.
,
2021
, “
Theoretical and Experimental Studies of Impact Energy and Rock-Drilling Efficiency in Vibro-Impact Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023201
.
3.
Song
,
H.
,
Shi
,
H.
,
Li
,
G.
,
Ji
,
Z.
,
Li
,
S.
,
Liu
,
C.
, and
Li
,
X.
,
2021
, “
Three-Dimensional Numerical Simulation of Energy Transfer Efficiency and Rock Damage in Percussive Drilling With Multiple-Button Bit
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
024501
.
4.
Ji
,
Z.
,
Shi
,
H.
,
Dai
,
X.
,
Song
,
H.
,
Li
,
G.
, and
Shen
,
Z.
,
2021
, “
Fragmentation Characteristics of Rocks Under Indentation by a Single Polycrystalline Diamond Compact Cutter
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
100906
.
5.
Schiegg
,
H. O.
,
Rødland
,
A.
,
Zhu
,
G.
, and
Yuen
,
D. A.
,
2015
, “
Electro-Pulse-Boring (EPB): Novel Super-Deep Drilling Technology for Low Cost Electricity
,”
J. Earth Sci. Chin.
,
26
(
1
), pp.
37
46
.
6.
Ushakov
,
V. Y.
,
Vajov
,
V. F.
, and
Zinoviev
,
N. T.
,
2019
,
Electro-Discharge Technology for Drilling Wells and Concrete Destruction
,
Springer
,
Cham, Switzerland
.
7.
Vogler
,
D.
,
Walsh
,
S. D.
, and
Saar
,
M. O.
,
2020
, “
A Numerical Investigation Into Key Factors Controlling Hard Rock Excavation via Electropulse Stimulation
,”
J. Rock Mech. Geotech. Eng.
,
12
(
4
), pp.
793
801
.
8.
Zuo
,
W.
,
Shi
,
F.
,
van der Wielen
,
K. P.
, and
Weh
,
A.
,
2015
, “
Ore Particle Breakage Behaviour in a Pilot Scale High Voltage Pulse Machine
,”
Miner. Eng.
,
84
, pp.
64
73
.
9.
Kovalchuk
,
B. M.
,
Kharlov
,
A. V.
,
Vizir
,
V. A.
,
Kumpyak
,
V. V.
,
Zorin
,
V. B.
, and
Kiselev
,
V. N.
,
2010
, “
High-Voltage Pulsed Generator for Dynamic Fragmentation of Rocks
,”
Rev. Sci. Instrum.
,
81
(
10
), p.
103506
.
10.
Parker
,
T.
,
Shi
,
F.
,
Evans
,
C.
, and
Powell
,
M.
,
2015
, “
The Effects of Electrical Comminution on the Mineral Liberation and Surface Chemistry of a Porphyry Copper Ore
,”
Miner. Eng.
,
82
, pp.
101
106
.
11.
Wang
,
E.
,
Shi
,
F.
, and
Manlapig
,
E.
,
2011
, “
Pre-Weakening of Mineral Ores by High Voltage Pulses
,”
Miner. Eng.
,
24
(
5
), pp.
455
462
.
12.
He
,
M.
,
Jiang
,
J.
,
Huang
,
G.
,
Liu
,
J.
, and
Li
,
C.
,
2013
, “
Disintegration of Rocks Based on Magnetically Isolated High Voltage Discharge
,”
Rev. Sci. Instrum.
,
84
(
2
), p.
024704
.
13.
Kusaiynov
,
K.
,
Nussupbekov
,
B. R.
,
Shuyushbayeva
,
N. N.
,
Tanasheva
,
N. K.
,
Shaimerdenova
,
K. M.
, and
Khassenov
,
A. K.
,
2017
, “
On Electric-Pulse Well Drilling and Breaking of Solids
,”
Tech. Phys.
,
62
(
6
), pp.
867
870
.
14.
Yudin
,
A. S.
,
Zhurkov
,
M. Y.
,
Martemyanov
,
S. M.
,
Datskevich
,
S. Y.
, and
Vazhov
,
V. F.
,
2019
, “
Electrical Discharge Drilling of Granite With Positive and Negative Polarity of Voltage Pulses
,”
Int. J. Rock Mech. Min. Sci.
,
123
, p.
104058
.
15.
Semkin
,
B. V.
,
Usov
,
A. F.
, and
Kurets
,
V. I.
,
1995
, “
The Principles of Electric Impulse Destruction of Materials
,” Kola Science Centre of the Russian Academy of Sciences,
Nauka
,
Saint Petersburg, Russia
.
17.
Diao
,
Z.
,
Zhao
,
Y. M.
,
Chen
,
B.
, and
Duan
,
C. L.
,
2012
, “
Thermal Decomposition of Epoxy Resin Contained in Printed Circuit Boards From Reactive Dynamics Using the ReaxFF Reactive Force Field
,”
J. Chin. Chem. Soc.
,
70
(
19
), pp.
2037
2044
.
18.
Diao
,
Z.
,
Zhao
,
Y.
,
Chen
,
B.
,
Duan
,
C.
, and
Song
,
S.
,
2013
, “
ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Epoxy Resin Thermal Decomposition with Model Compound
,”
J. Anal. Appl. Pyrol.
,
104
, pp.
618
624
.
19.
Yan
,
F.
,
Lin
,
B.
,
Zhu
,
C.
,
Guo
,
C.
,
Zhou
,
Y.
,
Zou
,
Q.
, and
Liu
,
T.
,
2016
, “
Using High-Voltage Electrical Pulses to Crush Coal in an Air Environment: An Experimental Study
,”
Powder Technol.
,
298
, pp.
50
56
.
20.
Yan
,
F.
,
Xu
,
J.
,
Lin
,
B.
,
Peng
,
S.
,
Zou
,
Q.
, and
Zhang
,
X.
,
2019
, “
Effect of Moisture Content on Structural Evolution Characteristics of Bituminous Coal Subjected to High-Voltage Electrical Pulses
,”
Fuel
,
241
, pp.
571
578
.
21.
Wang
,
E.
,
Shi
,
F.
, and
Manlapig
,
E.
,
2012
, “
Experimental and Numerical Studies of Selective Fragmentation of Mineral Ores in Electrical Comminution
,”
Int. J. Miner. Process.
,
112
, pp.
30
36
.
22.
Razavian
,
S. M.
,
Rezai
,
B.
, and
Irannajad
,
M.
,
2014
, “
Investigation on Pre-Weakening and Crushing of Phosphate Ore Using High Voltage Electric Pulses
,”
Adv. Powder Technol.
,
25
(
6
), pp.
1672
1678
.
23.
Timoshkin
,
I. V.
,
Mackersie
,
J. W.
, and
MacGregor
,
S. J.
,
2003
, “
Plasma Channel Microhole Drilling Technology
,”
Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472)
,
June 15–18
,
Dallas, TX
, pp.
1336
1339
.
24.
Lehmann
,
B. F.
,
Reich
,
M.
,
Mezzetti
,
M.
,
Anders
,
E.
, and
Voigt
,
M.
,
2017
, “
The Future of Deep Drilling—A Drilling System Based on Electro Impulse Technology
,”
Oil Gas Eur. Mag.
,
43
, pp.
187
191
.
25.
Vazhov
,
V. F.
,
Zhurkov
,
M. Y.
,
Datskevich
,
S. Y.
,
Muratov
,
V. M.
, and
Rødland
,
A.
,
2017
, “
Effect of Energy Deposition on High-Voltage Electropulse Drilling Efficiency in Granite
,”
J. Min. Sci.
,
53
(
3
), pp.
469
472
.
26.
Lisitsyn
,
I. V.
,
Inoue
,
H.
,
Nishizawa
,
I.
,
Katsuki
,
S.
, and
Akiyama
,
H.
,
1998
, “
Breakdown and Destruction of Heterogeneous Solid Dielectrics by High Voltage Pulses
,”
J. Appl. Phys.
,
84
(
11
), pp.
6262
6267
.
27.
Andres
,
U.
,
Timoshkin
,
I.
,
Jirestig
,
J.
, and
Stallknecht
,
H.
,
2001
, “
Liberation of Valuable Inclusions in Ores and Slags by Electrical Pulses
,”
Powder Technol.
,
114
(
1–3
), pp.
40
50
.
28.
Andres
,
U.
,
Timoshkin
,
I.
, and
Soloviev
,
M.
,
2001
, “
Energy Consumption and Liberation of Minerals in Explosive Electrical Breakdown of Ores
,”
Miner. Process. Extr. Metall.
,
110
(
3
), pp.
149
157
.
29.
Bluhm
,
H.
,
Frey
,
W.
,
Giese
,
H.
,
Hoppe
,
P.
,
Schultheiss
,
C.
, and
Strassner
,
R.
,
2000
, “
Application of Pulsed HV Discharges to Material Fragmentation and Recycling
,”
IEEE Trans. Dielectr. Electr. Insul.
,
7
(
5
), pp.
625
636
.
30.
Burkin
,
V. V.
,
Kuznetsova
,
N. S.
, and
Lopatin
,
V. V.
,
2009
, “
Dynamics of Electro Burst in Solids: I. Power Characteristics of Electro Burst
,”
J. Phys. D: Appl. Phys.
,
42
(
18
), p.
185204
.
31.
Burkin
,
V. V.
,
Kuznetsova
,
N. S.
, and
Lopatin
,
V. V.
,
2009
, “
Dynamics of Electro Burst in Solids: II. Characteristics of Wave Process
,”
J. Phys. D: Appl. Phys.
,
42
(
23
), p.
235209
.
32.
Zhang
,
X.
,
Lin
,
B.
,
Li
,
Y.
,
Zhu
,
C.
, and
Li
,
Y.
,
2019
, “
Breakage Features of Coal Treated by Cyclic Single Pulse Electrical Disintegration
,”
Energy Sci. Eng.
,
8
(
1
), pp.
236
247
.
33.
Zhang
,
X.
,
Lin
,
B.
,
Li
,
Y.
,
Zhu
,
C.
,
Kong
,
J.
, and
Li
,
Y.
,
2019
, “
Enhancement Effect of NaCl Solution on Pore Structure of Coal With High-Voltage Electrical Pulse Treatment
,”
Fuel
,
235
, pp.
744
752
.
34.
Razavian
,
S. M.
,
Rezai
,
B.
,
Irannajad
,
M.
, and
Ravanji
,
M. H.
,
2015
, “
Numerical Simulation of High Voltage Electric Pulse Comminution of Phosphate Ore
,”
Int. J. Min. Sci. Technol.
,
25
(
3
), pp.
473
478
.
35.
Li
,
C.
,
Duan
,
L.
,
Tan
,
S.
, and
Chikhotkin
,
V.
,
2018
, “
Influences on High-Voltage Electro Pulse Boring in Granite
,”
Energies
,
11
(
9
), p.
2461
.
36.
Li
,
C.
,
Duan
,
L.
,
Tan
,
S.
,
Chikhotkin
,
V.
, and
Fu
,
W.
,
2019
, “
Damage Model and Numerical Experiment of High-Voltage Electro Pulse Boring in Granite
,”
Energies
,
12
(
4
), p.
727
.
37.
Li
,
C.
,
Duan
,
L.
,
Tan
,
S.
,
Chikhotkin
,
V.
, and
Wang
,
X.
,
2019
, “
An Electro Breakdown Damage Model for Granite and Simulation of Deep Drilling by High-Voltage Electropulse Boring
,”
Shock Vib.
,
2019
(
1
), pp.
1
12
.
38.
Lopatin
,
V. V.
,
Noskov
,
M. D.
,
Usmanov
,
G. Z.
, and
Cheglokov
,
A. A.
,
2006
, “
Modeling of Impulse Electric Discharge Propagation in a Condensed Dielectric
,”
Russ. Phys. J.
,
49
(
3
), pp.
243
250
.
39.
Walsh
,
S. D.
, and
Vogler
,
D.
,
2020
, “
Simulating Electropulse Fracture of Granitic Rock
,”
Int. J. Rock Mech. Min.
,
128
, p.
104238
.
40.
Zhu
,
X.
,
Luo
,
Y.
,
Liu
,
W.
,
He
,
L.
,
Gao
,
R.
, and
Jia
,
Y.
,
2021
, “
On the Mechanism of High-Voltage Pulsed Fragmentation From Electrical Breakdown Process
,”
Rock Mech. Rock Eng.
,
54
(
9
), pp.
1
24
.
41.
Dev
,
B.
,
Samudrala
,
O.
, and
Wang
,
J.
,
2017
, “
Comparison of Leakage Characteristics of Viton and Polytetrafluoroethylene Seals in Gas-Lift Valve Applications
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012906
.
42.
Zhang
,
Y.
,
Wang
,
H.
,
Du
,
W.
,
Niu
,
K.
, and
Wei
,
X.
,
2021
, “
Temperature-Programmed Oxidation Experiments on Typical Bituminous Coal Under Inert Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032102
.
43.
Li
,
C.
,
Duan
,
L.
,
Wu
,
L.
,
Tan
,
S.
,
Zheng
,
J.
, and
Chikhotkin
,
V.
,
2021
, “
Optimization of Discharge Circuit Model Based on Electro Pulse Boring Experiment
,”
J. Nat. Gas Sci. Eng.
,
86
, p.
103730
.
44.
Li
,
C.
,
Duan
,
L.
,
Kang
,
J.
,
Li
,
A.
,
Xiao
,
Y.
, and
Chikhotkin
,
V.
,
2021
, “
Weight Analysis and Experimental Study on Influencing Factors of High-Voltage Electro-Pulse Boring
,”
J. Pet. Sci. Eng.
,
205
, p.
108807
.
45.
Cho
,
S. H.
,
Yokota
,
M.
,
Ito
,
M.
,
Kawasaki
,
S.
,
Jeong
,
S. B.
,
Kim
,
B. K.
, and
Kaneko
,
K.
,
2014
, “
Electrical Disintegration and Micro-Focus X-Ray CT Observations of Cement Paste Samples With Dispersed Mineral Particles
,”
Miner Eng.
,
57
, pp.
79
85
.
46.
Kuznetsova
,
N. S.
,
Lopatin
,
V. V.
, and
Yudin
,
A. S.
,
2014
, “
Effect of Electro-Discharge Circuit Parameters on the Destructive Action of Plasma Channel in Solid Media
,”
J. Phys. Conf. Ser.
,
552
, p.
012029
.
47.
Li
,
C.
,
Duan
,
L.
,
Wu
,
L.
,
Tan
,
S.
,
Zheng
,
J.
, and
Chikhotkin
,
V.
,
2020
, “
Experimental and Numerical Analyses of Electro-Pulse Rock-Breaking Drilling
,”
J. Nat. Gas Sci. Eng.
,
77
, p.
103263
.
48.
Yan
,
F.
,
Lin
,
B.
,
Xu
,
J.
,
Wang
,
Y.
,
Zhang
,
X.
, and
Peng
,
S.
,
2018
, “
Structural Evolution Characteristics of Middle–High Rank Coal Samples Subjected to High-Voltage Electrical Pulse
,”
Energy Fuel
,
32
(
3
), pp.
3263
3271
.
You do not currently have access to this content.