Abstract

Darrieus-type straight-bladed vertical axis wind turbines (SB-VAWTs) are more appropriate for generating electricity than other VAWTs mostly suitable for regions having low to medium wind speed. The installation of SB-VAWTs faces start-up problems, which limits its applicability in low-wind speed environments. The start-up problem arises mainly due to the cross-sectional blade profile of the SB-VAWTs and is the crucial parameter used for blade design. To overcome this issue, the present investigation aims to study the influence of the J-shape airfoil with various opening ratios in the Darrieus-type SB-VAWTs in terms of starting torque and aerodynamic performance. The design of a J-shape airfoil is created by removing a portion toward the trailing edge of the conventional NACA 4415 airfoil on its upper or lower surface. This analysis displays a maximum power coefficient of 0.517, 0.512, 0.506, 0.498, and 0.488 when the Darrieus-type SB-VAWT utilizes upper cut J-shape airfoils with opening ratios of 0.8, 0.7, 0.6, 0.5, and 0.4, respectively, at the tip speed ratio (TSR) of 1.6. These values are higher than the power coefficient (0.486) of conventional NACA 4415 airfoil at the same TSR. The SB-VAWT depicts a lower performance while it employs the lower cut J-shape airfoils. Furthermore, the present study demonstrates that the power and torque coefficient of SB-VAWT improves by about 31% when the opening ratio of upper cut J-shape airfoil is varied from 0.1 to 0.8.

References

1.
Sørensen
,
B.
,
Breeze
,
P.
,
Suppes
,
G. J.
,
El Bassam
,
N.
,
Silveira
,
S.
,
Yang
,
S. T.
, and
Storvick
,
T.
,
2008
,
Renewable Energy Focus Handbook
,
Academic Press, Elsevier Science
,
Oxford, UK
.
2.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
121
, pp.
281
296
.
3.
Boroumandjazi
,
G.
,
Rismanchi
,
B.
, and
Saidur
,
R.
,
2013
, “
Technical Characteristic Analysis of Wind Energy Conversion Systems for Sustainable Development
,”
Energy Convers. Manage.
,
69
, pp.
87
94
.
4.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
5.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.
6.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.
7.
Chen
,
J.
,
Yang
,
H.
,
Yang
,
M.
, and
Xu
,
H.
,
2015
, “
The Effect of the Opening Ratio and Location on the Performance of a Novel Vertical Axis Darrieus Turbine
,”
Energy
,
89
, pp.
819
834
.
8.
Naik
,
K.
, and
Sahoo
,
N.
,
2021
, “
Dimple Shape Effect on the Aerodynamic Performance of H-Rotor Darrieus Vertical Axis Wind Turbine
,”
Proceedings of the ASME 2021 Gas Turbine India Conference GTINDIA 2021
,
Virtual, Online
,
Dec. 2–3
, Vol. 85536, p. V001T09A006.
9.
Siram
,
O.
,
Kumar
,
R.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2022
, “
A Comprehensive Review on Analytical Formulations of Wind Turbine Wake Models and Future Scope in the Development of Wind Farms of Assorted Configurations
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
110801
.
10.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
On the Influence of Blade Thickness-to-Chord Ratio on Dynamic Stall Phenomenon in H-Type Darrieus Wind Rotors
,”
Energy Convers. Manage.
,
218
, p.
113024
.
11.
Jin
,
X.
,
Zhao
,
G.
,
Gao
,
K.
, and
Ju
,
W.
,
2015
, “
Darrieus Vertical Axis Wind Turbine: Basic Research Methods
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
212
225
.
12.
Kumar
,
P. M.
,
Sivalingam
,
K.
,
Narasimalu
,
S.
,
Lim
,
T.-C.
,
Ramakrishna
,
S.
, and
Wei
,
H.
,
2019
, “
A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines
,”
J. Power Energy Eng.
,
7
(
4
), pp.
27
44
.
13.
Lazauskas
,
L.
, and
Kirke
,
B. K.
,
1992
, “
Performance Optimisation of a Self-Acting Variable Pitch Vertical Axis Wind Turbine
,”
Wind Eng.
,
16
(
1
), pp.
10
26
. https://www.jstor.org/stable/43749467
14.
Batista
,
N. C.
,
Melício
,
R.
,
Matias
,
J. C. O.
, and
Catalão
,
J. P. S.
,
2011
, “
New Blade Profile for Darrieus Wind Turbines Capable to Self-Start
,”
IET Conference on Renewable Power Generation (RPG 2011)
,
Edinburgh, UK
,
Sept. 6–8
, pp.
1
5
.
15.
Beri
,
H.
, and
Yao
,
Y.
,
2011
, “
Effect of Camber Airfoil on Self Starting of Vertical Axis Wind Turbine
,”
J. Environ. Sci. Technol.
,
4
(
3
), pp.
302
312
.
16.
Healy
,
J. V.
,
1978
, “
The Influence of Blade Thickness on the Output of Vertical Axis Wind Turbines
,”
Wind Eng.
,
2
(
1
), pp.
1
9
. https://www.jstor.org/stable/43749780
17.
Qamar
,
S. B.
, and
Janajreh
,
I.
,
2017
, “
Investigation of Effect of Cambered Blades on Darrieus VAWTs
,”
Energy Procedia
,
105
, pp.
537
543
.
18.
Singh
,
M. A.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2015
, “
Investigation of Self-Starting and High Rotor Solidity on the Performance of a Three S1210 Blade H-Type Darrieus Rotor
,”
Renewable Energy
,
76
, pp.
381
387
.
19.
Bausas
,
M. D.
, and
Danao
,
L. A. M.
,
2015
, “
The Aerodynamics of a Camber-Bladed Vertical Axis Wind Turbine in Unsteady Wind
,”
Energy
,
93
, pp.
1155
1164
.
20.
Wang
,
Z.
,
Wang
,
Y.
, and
Zhuang
,
M.
,
2018
, “
Improvement of the Aerodynamic Performance of Vertical Axis Wind Turbines With Leading-Edge Serrations and Helical Blades Using CFD and Taguchi Method
,”
Energy Convers. Manage.
,
177
, pp.
107
121
.
21.
Roshan
,
A.
,
Sagharichi
,
A.
, and
Maghrebi
,
M. J.
,
2020
, “
Nondimensional Parameters’ Effects on Hybrid Darrieus-Savonius Wind Turbine Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011202
.
22.
Schönborn
,
A.
, and
Chantzidakis
,
M.
,
2007
, “
Development of a Hydraulic Control Mechanism for Cyclic Pitch Marine Current Turbines
,”
Renewable Energy
,
32
(
4
), pp.
662
679
.
23.
Bedon
,
G.
,
Castelli
,
M. R.
, and
Benini
,
E.
,
2014
, “
Proposal for an Innovative Chord Distribution in the Troposkien Vertical Axis Wind Turbine Concept
,”
Energy
,
66
, pp.
689
698
.
24.
Kyozuka
,
Y.
,
2008
, “
An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation
,”
J. Fluid Sci. Technol.
,
3
(
3
), pp.
439
449
.
25.
Zamani
,
M.
,
Maghrebi
,
M. J.
, and
Varedi
,
S. R.
,
2016
, “
Starting Torque Improvement Using J-Shaped Straight-Bladed Darrieus Vertical Axis Wind Turbine by Means of Numerical Simulation
,”
Renewable Energy
,
95
, pp.
109
126
.
26.
Zamani
,
M.
,
Nazari
,
S.
,
Moshizi
,
S. A.
, and
Javad
,
M.
,
2016
, “
Three Dimensional Simulation of J-Shaped Darrieus Vertical Axis Wind Turbine
,”
Energy
,
116
, pp.
1243
1255
.
27.
Ghazalla
,
R. A.
,
Mohamed
,
M. H.
, and
Ha
,
A. A.
,
2019
, “
Synergistic Analysis of a Darrieus Wind Turbine Using Computational Fluid Dynamics
,”
Energy
,
189
, p.
116214
.
28.
Mohamed
,
M. H.
,
2019
, “
Criticism Study of J-Shaped Darrieus Wind Turbine : Performance Evaluation and Noise Generation Assessment
,”
Energy
,
177
, pp.
367
385
.
29.
Celik
,
Y.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2022
, “
Design and Aerodynamic Performance Analyses of the Self-Starting H-Type VAWT Having J-Shaped Aerofoils Considering Various Design Parameters Using CFD
,”
Energy
,
251
, p.
123881
.
30.
Tong
,
W.
,
2010
,
Wind Power Generation and Wind Turbine Design
,
WIT Press
,
Southampton, UK
.
31.
Hill
,
N.
,
Dominy
,
R.
,
Ingram
,
G.
, and
Dominy
,
J.
,
2009
, “
Darrieus Turbines: The Physics of Self-Starting:
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
223
(
1
), pp.
21
29
.
32.
Earnest
,
J.
, and
Rachel
,
S.
,
2019
,
Wind Power Technology
,
PHI Learning Pvt. Ltd
,
Delhi, India
.
33.
Gupta
,
R.
,
Biswas
,
A.
, and
Sharma
,
K. K.
,
2008
, “
Comparative Study of a Three-Bucket Savonius Rotor With a Combined Three-Bucket Savonius-Three-Bladed Darrieus Rotor
,”
Renewable Energy
,
33
(
9
), pp.
1974
1981
.
34.
Kirke
,
B. K.
, and
Lazauskas
,
L.
,
1991
, “
Enhancing the Performance of Vertical Axis Wind Turbine Using a Simple Variable Pitch System
,”
Wind Eng.
,
15
(
4
), pp.
187
195
. https://www.jstor.org/stable/43750355
35.
López
,
O.
,
Meneses
,
D.
,
Quintero
,
B.
, and
Laín
,
S.
,
2016
, “
Computational Study of Transient Flow Around Darrieus Type Cross Flow Water Turbines
,”
J. Renewable Sustainable Energy
,
8
(
1
), p.
014501
.
36.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
Capturing the Dynamic Stall in H-Type Darrieus Wind Turbines Using Different URANS Turbulence Models
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091302
.
37.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
38.
Almohammadi
,
K. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2015
, “
Modeling Dynamic Stall of a Straight Blade Vertical Axis Wind Turbine
,”
J. Fluids Struct.
,
57
, pp.
144
158
.
39.
Mohamed
,
M. H.
,
2012
, “
Performance Investigation of H-Rotor Darrieus Turbine With New Airfoil Shapes
,”
Energy
,
47
(
1
), pp.
522
530
.
40.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
.
41.
Satrio
,
D.
, and
Utama
,
I. K. A. P.
,
2018
, “
Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine
,”
J. Mar. Sci. Appl.
,
17
(
2
), pp.
208
215
.
42.
Bravo
,
R.
,
Tullis
,
S.
, and
Ziada
,
S.
,
2007
, “
Performance Testing of a Small Vertical-Axis Wind Turbine
,”
Proceedings of 21st Canadian Congress of Applied Mechanics (CANCAM 2007)
,
Toronto, ON (Canada)
,
June 3–7
, pp.
3
7
.
43.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2014
, “
2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model
,”
Energy Procedia
,
45
, pp.
131
140
.
44.
Peng
,
J.
,
2018
, “
Effects of Aerodynamic Interactions of Closely-Placed Vertical Axis Wind Turbine Pairs
,”
Energies
,
11
(
10
), pp.
1
13
.
45.
Siram
,
O.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2022
, “
Blade Design Considerations of Small Wind Turbines: From Classical to Emerging Bio-Inspired Profiles/Shapes
,”
J. Renewable Sustainable Energy
,
14
(
4
), p.
042701
.
46.
Pan
,
L.
,
Zhu
,
Z.
,
Xiao
,
H.
, and
Wang
,
L.
,
2021
, “
Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine
,”
Energies
,
14
(
19
), pp.
1
29
.
You do not currently have access to this content.