Abstract

The fate of sulfur and conversion of metals during the co-gasification of municipal solid waste (MSW) and gypsum is examined here using aspen plus combined with Thermo-Calc for the process model development. The effect of air ratio, temperature, and MSW-to-gypsum feed mass ratio on the syngas evolution, sulfur transformation, and mineral speciation behavior is investigated. The results showed prevention of gypsum sulfur transformation to sulfur dioxide at temperatures below 1050 °C, air ratio < 0.4, and MSW-to-CaSO4 feed mass ratio < 33 wt%. Approximately 90 wt% of feed was transformed into gas products comprising 22% CO and 19% H2. At approximately 900 °C, major minerals formed were CaS (alabandite), melilite, anorthite, rankinite, nepheline, and wollastonite. Melilite, a calcium silicate of aluminum and magnesium, dominated over all other silicates. At temperatures >1000 °C, these minerals transformed into a more stable calcium orthosilicate (CaSiO4) and molten oxysulfide. At temperatures higher than 1200 °C, all metals in MSW were transformed into molten oxides. The results show that syngas and minerals can be recovered during the co-gasification of MSW and gypsum to directly reveal the synergetic benefits of co-processing MSW and gypsum low-value waste materials.

References

1.
Tayibi
,
H.
,
Peña
,
C.
,
López
,
F. A.
, and
López-Delgado
,
A.
,
2007
, “
Management of MSW in Spain and Recovery of Packaging Steel Scrap
,”
Waste Manag.
,
27
(
11
), pp.
1655
1665
.
2.
Manegdeg
,
R. F.
,
Rollon
,
A.
,
Ballesteros
,
F.
,
Magdaluyo
,
E.
,
De Sales-Papa
,
L.
,
Clemente
,
E.
,
Macapinlac
,
E.
,
Ibañez
,
R.
, and
Cervera
,
R. B.
,
2022
, “
Multi-Attribute Assessment of Waste-to-Energy Technologies for Medical, Industrial, and Electronic Residual Wastes
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070908
.
3.
EPA
,
2020
, “
Advancing Sustainable Materials Management
,” United States Environ. Prot. Agency. Off. Resour. Conserv. Recover., p.
184
.
4.
Duque Uribe
,
D.
,
Montiel-Bohórquez
,
N. D.
, and
Pérez
,
J. F.
,
2021
, “
Techno-Economic Analysis of a Small-Scale Downdraft Gasification-Based Cogeneration Power Plant Using Green Wastes
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090901
.
5.
Behbahaninia
,
A.
,
Banifateme
,
M.
,
Azmayesh
,
M. H.
,
Naderi
,
S.
, and
Pignatta
,
G.
,
2022
, “
Markov and Monte Carlo Simulation of Waste-to-Energy Power Plants Considering Variable Fuel Analysis and Failure Rates
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061201
.
6.
Montiel-Bohórquez
,
N. D.
,
Saldarriaga-Loaiza
,
J. D.
, and
Pérez
,
J. F.
,
2021
, “
A Techno-Economic Assessment of Syngas Production by Plasma Gasification of Municipal Solid Waste as a Substitute Gaseous Fuel
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090901
.
7.
Cao
,
Q.
,
Lu
,
W.
,
Li
,
J.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2023
, “
Energy Recovery of Expired Pistachios From Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012102
.
8.
Espindola
,
J.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Rice Husk and Chicken Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022101
.
9.
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Chicken and Cow Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011301
.
10.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effects During Co-Pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
11.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2022
, “
Co-Processing of Municipal Solid Waste With Gypsum Waste for Enhanced Product Recovery
,”
ASME 2022 Power Conference
,
Pittsburgh, PA
,
July 18–19
, American Society of Mechanical Engineers, p. 85550.
12.
Burra
,
K. R. G.
,
Fernández Hernández
,
I.
,
Castaldi
,
M. J.
,
Goff
,
S.
, and
Gupta
,
A. K.
,
2023
, “
Effect of Gypsum Waste Inclusion on Gasification of Municipal Solid Waste
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
021701
.
13.
Piotrowska
,
P.
,
Rebbling
,
A.
,
Lindberg
,
D.
,
Backman
,
R.
,
Öhman
,
M.
, and
Boström
,
D.
,
2015
, “
Waste Gypsum Board and Ash-Related Problems During Combustion of Biomass. 1. Fluidized Bed
,”
Energy Fuels
,
29
(
2
), pp.
877
893
.
14.
Gerasimov
,
G. Y.
, and
Bogacheva
,
T. M.
,
2001
, “
Thermodynamic Analysis of the Process of Formation of Sulfur Compounds in Oxygen Gasification of Coal
,”
Inzh.-Fiz. Zh.
,
74
(
3
), pp.
193
197
.
15.
Attar
,
A.
,
1978
, “
Chemistry, Thermodynamics and Kinetics of Reactions of Sulphur in Coal-Gas Reactions: A Review
,”
Fuel
,
57
(
4
), pp.
201
212
.
16.
Jazbec
,
M.
,
Sendt
,
K.
, and
Haynes
,
B. S.
,
2004
, “
Kinetic and Thermodynamic Analysis of the Fate of Sulphur Compounds in Gasification Products
,”
Fuel
,
83
(
16
), pp.
2133
2138
.
17.
Chai
,
Z.
,
Zhu
,
Z.
,
Wang
,
X.
, and
Wang
,
K.
,
2020
, “
Sulfur Conversions During Coal Char Gasification With a Two-Stage Air Supply in a Pilot-Scale Circulating Fluidized Bed Gasifier
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
42
(
4
), pp.
421
431
.
18.
Motaung
,
S.
,
Zvimba
,
J.
,
Maree
,
J.
, and
Kolesnikov
,
A.
,
2015
, “
Thermochemical Reduction of Pelletized Gypsum Mixed With Carbonaceous Reductants
,”
Water SA
,
41
(
3
), pp.
369
374
.
19.
Jia
,
X.
,
Wang
,
Q.
,
Cen
,
K.
, and
Chen
,
L.
,
2016
, “
An Experimental Study of CaSO4 Decomposition During Coal Pyrolysis
,”
Fuel
,
163
(
1
), pp.
157
165
.
20.
Ma
,
L.
,
Ning
,
P.
,
Zheng
,
S.
,
Niu
,
X.
,
Zhang
,
W.
, and
Du
,
Y.
,
2010
, “
Reaction Mechanism and Kinetic Analysis of the Decomposition of Phosphogypsum via a Solid-State Reaction
,”
Ind. Eng. Chem. Res.
,
49
(
8
), pp.
3597
3602
.
21.
Yang
,
J.
,
Ma
,
L.
,
Yang
,
J.
,
Guo
,
Z.
,
Liu
,
H.
, and
Zhang
,
W.
,
2019
, “
Chemical Looping Gasification of Phosphogypsum as an Oxygen Carrier: The Ca and S Migration Mechanism Using the DFT Method
,”
Sci. Total Environ.
,
689
(
1
), pp.
854
864
.
22.
Wheelock
,
T. D.
, and
Boylan
,
D. R.
,
1960
, “
Reductive Decomposition of Gypsum by Carbon Monoxide
,”
Ind. Eng. Chem.
,
52
(
3
), pp.
215
218
.
23.
Van Caneghem
,
J.
,
De Coster
,
E.
,
Vandenbergh
,
K.
,
De Broyer
,
S.
,
Lambrix
,
N.
, and
Weemaels
,
L.
,
2019
, “
Closing the Household Metal Packaging Cycle Through Recovery of Scrap From Waste-to-Energy Bottom Ash: The Case Study of Flanders
,”
Resour. Conserv. Recycl.
,
144
(
October 2018
), pp.
115
122
.
24.
Fabricius
,
A.-L.
,
Renner
,
M.
,
Voss
,
M.
,
Funk
,
M.
,
Perfoll
,
A.
,
Gehring
,
F.
,
Graf
,
R.
,
Fromm
,
S.
, and
Duester
,
L.
,
2020
, “
Municipal Waste Incineration Fly Ashes: From a Multi-Element Approach to Market Potential Evaluation
,”
Environ. Sci. Eur.
,
32
(
1
), p.
88
.
25.
Joseph
,
A.
,
Snellings
,
R.
,
Van den Heede
,
P.
,
Matthys
,
S.
, and
De Belie
,
N.
,
2018
, “
The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View
,”
Materials (Basel)
,
11
(
1
), p.
141
.
26.
Šyc
,
M.
,
Simon
,
F. G.
,
Hykš
,
J.
,
Braga
,
R.
,
Biganzoli
,
L.
,
Costa
,
G.
,
Funari
,
V.
, and
Grosso
,
M.
,
2020
, “
Metal Recovery From Incineration Bottom Ash: State-of-the-Art and Recent Developments
,”
J. Hazard. Mater.
,
393
, p.
122433
.
27.
Tian
,
Y.
,
Themelis
,
N. J.
,
Bourtsalas
,
A. C.
,
Kawashima
,
S.
, and
Gorokhovich
,
Y.
,
2023
, “
Systematic Study of the Formation and Chemical/Mineral Composition of Waste-to-Energy (WTE) Fly Ash
,”
Mater. Chem. Phys.
,
293
, p.
126849
.
28.
Bakalár
,
T.
,
Pavolová
,
H.
,
Hajduová
,
Z.
,
Lacko
,
R.
, and
Kyšeľa
,
K.
,
2021
, “
Metal Recovery From Municipal Solid Waste Incineration Fly Ash as a Tool of Circular Economy
,”
J. Clean. Prod.
,
302
(
6
), p.
126977
.
29.
Geng
,
C.
,
Chen
,
C.
,
Shi
,
X.
,
Wu
,
S.
,
Jia
,
Y.
,
Du
,
B.
, and
Liu
,
J.
,
2020
, “
Recovery of Metals From Municipal Solid Waste Incineration Fly Ash and Red Mud via a Co-Reduction Process
,”
Resour. Conserv. Recycl.
,
154
, p.
104600
.
30.
Holm
,
O.
,
Wollik
,
E.
, and
Johanna Bley
,
T.
,
2018
, “
Recovery of Copper From Small Grain Size Fractions of Municipal Solid Waste Incineration Bottom Ash by Means of Density Separation
,”
Int. J. Sustain. Eng.
,
11
(
4
), pp.
250
260
.
31.
López-Delgado
,
A.
,
Peña
,
C.
,
López
,
V.
, and
López
,
F. A.
,
2003
, “
Quality of Ferrous Scrap From MSW Incinerators: A Case Study of Spain
,”
Resour. Conserv. Recycl.
,
40
(
1
), pp.
39
51
.
32.
Mehr
,
J.
,
Haupt
,
M.
,
Skutan
,
S.
,
Morf
,
L.
,
Raka Adrianto
,
L.
,
Weibel
,
G.
, and
Hellweg
,
S.
,
2021
, “
The Environmental Performance of Enhanced Metal Recovery From Dry Municipal Solid Waste Incineration Bottom Ash
,”
Waste Manag.
,
119
(
1
), pp.
330
341
.
33.
Michalik
,
M.
,
Kasina
,
M.
,
Kajdas
,
B.
, and
Kowalski
,
P.
,
2022
, “
Form of the Occurrence of Aluminium in Municipal Solid Waste Incineration Residue—Even Hydrogen Is Lost
,”
Energies
,
15
(
21
), p.
8186
.
34.
Muchova
,
L.
,
Bakker
,
E.
, and
Rem
,
P.
,
2009
, “
Precious Metals in Municipal Solid Waste Incineration Bottom Ash
,”
Water, Air, Soil Pollut. Focus
,
9
(
1–2
), pp.
107
116
.
35.
Bourtsalas
,
A.
,
2015
, “
Processing the Problematic Fine Fraction of Incinerator Bottom
,”
Doctoral dissertation
,
Imperial College, London
. https://core.ac.uk/download/pdf/77007771.pdf
36.
Niu
,
M.
,
Fu
,
Y.
, and
Liu
,
S.
,
2022
, “
Mineralogical Characterization of Gasification Ash With Different Particle Sizes From Lurgi Gasifier in the Coal-to-Synthetic Natural Gas Plant
,”
ACS Omega
,
7
(
10
), pp.
8526
8535
.
37.
Liu
,
S.
,
Ma
,
W.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Qi
,
K.
,
2018
, “
Sequential Transformation Behavior of Iron-Bearing Minerals During Underground Coal Gasification
,”
Minerals
,
8
(
3
), pp.
1
20
.
38.
Van Dyk
,
J. C.
,
Benson
,
S. A.
,
Laumb
,
M. L.
, and
Waanders
,
B.
,
2009
, “
Coal and Coal Ash Characteristics to Understand Mineral Transformations and Slag Formation
,”
Fuel
,
88
(
6
), pp.
1057
1063
.
39.
Schupsky
,
J. P.
,
Guo
,
M.
,
Blanpain
,
B.
, and
Muller
,
M.
,
2020
, “
Investigations on Crystallization Processes of Three Oxidic Gasifier Slag Systems
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070904
.
40.
Głód
,
K.
,
Lasek
,
J.
,
Słowik
,
K.
,
Zuwała
,
J.
,
Nabagło
,
D.
,
Jura
,
K.
, and
Yrkowski
,
M.
,
2020
, “
Investigation of Ash-Related Issues During Combustion of Maize Straw and Wood Biomass Blends in Lab-Scale Bubbling Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022201
.
41.
Phyllis Database
,
2011
, “
Database for the Physico-Chemical Composition of (Treated) Lignocellulosic Biomass, Micro- and Macroalgae, Various Feedstocks for Biogas Production and Biochar
,” https://phyllis.nl/Biomass/View/2920
42.
Tungalag
,
A.
,
Lee
,
B.
,
Yadav
,
M.
, and
Akande
,
O.
,
2020
, “
Yield Prediction of MSW Gasification Including Minor Species Through ASPEN Plus Simulation
,”
Energy
,
198
(
1
), p.
117296
.
43.
Laohalidanond
,
K.
,
Kerdsuwan
,
S.
,
Burra
,
K. R. G.
,
Li
,
J.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Generation From Landfills Derived Torrefied Refuse Fuel Using a Downdraft Gasifier
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052102
.
44.
Jamro
,
I. A.
,
Raheem
,
A.
,
Khoso
,
S.
,
Baloch
,
H. A.
,
Kumar
,
A.
,
Chen
,
G.
,
Bhagat
,
W. A.
,
Wenga
,
T.
, and
Ma
,
W.
,
2023
, “
Investigation of Enhanced H2 Production From Municipal Solid Waste Gasification via Artificial Neural Network With Data on Tar Compounds
,”
J. Environ. Manage.
,
328
(
August 2022
), p.
117014
.
45.
Arena
,
U.
,
2013
, “Fluidized Bed Gasification,”
Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification
,
Elsevier
,
Naples, Italy
, pp.
765
812
.
46.
Srinivasachar
,
S.
,
Helble
,
J. J.
, and
Boni
,
A. A.
,
1990
, “
Mineral Behavior During Coal Combustion 1. Pyrite Transformations
,”
Prog. Energy Combust. Sci.
,
16
(
4
), pp.
281
292
.
47.
Cheng
,
X.
,
Han
,
K.
,
Huang
,
Z.
, and
Wang
,
Z.
,
2017
, “
Ash Fusibility Based on Modes of Occurrence and High-Temperature Behaviors of Mineral Matter in Coals
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022003
.
48.
Nied
,
E. P.
,
Bons
,
J. P.
, and
Lundgreen
,
R. K.
,
2023
, “
Unpacking Intermineral Synergies and Reactions During Dust Deposition in an Impingement Coolant Jet
,”
ASME J. Turbomach.
,
145
(
5
), p.
051015
.
49.
Liu
,
S.
,
Qi
,
C.
,
Zhang
,
S.
, and
Deng
,
Y.
,
2016
, “
Minerals in the Ash and Slag From Oxygen-Enriched Underground Coal Gasification
,”
Minerals
,
6
(
2
), p.
27
.
50.
Farajollahi
,
A.
,
Hejazirad
,
S. A.
, and
Rostami
,
M.
,
2022
, “
Thermodynamic Modeling of a Power and Hydrogen Generation System Driven by Municipal Solid Waste Gasification
,”
Environ. Dev. Sustain.
,
24
(
4
), pp.
5887
5916
.
51.
Jayah
,
T. H.
,
Aye
,
L.
,
Fuller
,
R. J.
, and
Stewart
,
D. F.
,
2003
, “
Computer Simulation of a Downdraft Wood Gasifier for Tea Drying
,”
Biomass Bioenergy
,
25
(
4
), pp.
459
469
.
52.
Han
,
J.
,
Liang
,
Y.
,
Hu
,
J.
,
Qin
,
L.
,
Street
,
J.
,
Lu
,
Y.
, and
Yu
,
F.
,
2017
, “
Modeling Downdraft Biomass Gasification Process by Restricting Chemical Reaction Equilibrium With Aspen Plus
,”
Energy Convers. Manag.
,
153
, pp.
641
648
.
53.
Rabah
,
A. A.
,
2022
, “
Syngas Production From Agriculture Residues: Sudan
,”
J. Energy
,
2022
, pp.
1
10
.
You do not currently have access to this content.