Abstract

The investigation studies about increasing powertrain efficiency and reducing exhaust emissions and fuel consumption have been focused on hybrid vehicles for a few decades. However, the investigations are related to improvement of an individual powertrain component or energy management strategy for hybrid vehicles. Therefore, this study investigates the effects of the layout of the three-speed transmission and various gear selection procedures on vehicle performance, component efficiency, and exhaust emissions for same vehicle parameters, gear ratios, and capacity of the components in a parallel hybrid powertrain. Three design alternatives have been modeled and powertrain simulations have been performed according to the three different drive cycles as New European Drive Cycle (NEDC), Federal Test Procedure (FTP-72), and Istanbul Drive Cycle (IDC) using matlab®—Simulink® environment. The main simulation results are given for vehicle performance (acceleration, grading capacity, and maximum speed) and component efficiencies (battery and electric motor), brake-specific fuel consumption, and exhaust emissions of the engine as CO2, CO, HC, and NOx during the operation on the three-drive cycle. The simulation results showed that better vehicle performance, fuel consumption, and exhaust emissions can be achieved separately by changing the layout of the transmission in parallel hybrid vehicles.

References

1.
Enang
,
W.
, and
Bannister
,
C.
,
2017
, “
Modelling and Control of Hybrid Electric Vehicles (A Comprehensive Review)
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
1210
1239
.
2.
Alegre
,
S.
,
Míguez
,
J. V.
, and
Carpio
,
J.
,
2017
, “
Modelling of Electric and Parallel-Hybrid Electric Vehicle Using Matlab/Simulink Environment and Planning of Charging Stations Through a Geographic Information System and Genetic Algorithms
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
1020
1027
.
3.
Alcázar-García
,
D.
, and
Romeral Martínez
,
J. L.
,
2022
, “
Model-Based Design Validation and Optimization of Drive Systems in Electric, Hybrid, Plug-In Hybrid and Fuel Cell Vehicles
,”
Energy
,
254
(Part A), p.
123719
.
4.
Capata
,
R.
, and
Sciubba
,
E.
,
2013
, “
The Low Emission Turbogas Hybrid Vehicle Concept—Preliminary Simulation and Vehicle Packaging
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032203
.
5.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2014
, “
Experimental and Theoretical Efficiency Investigation of Hybrid Electric Vehicle Battery Thermal Management Systems
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011202
.
6.
Panchal
,
S.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2016
, “
Thermodynamic Analysis of Hydraulic Braking Energy Recovery Systems for a Vehicle
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011601
.
7.
Karim
,
A.
, and
Shahid
,
Z.
,
2018
, “
Performance and Cost Analysis of Conventional Petrol Car Converted Into Solar-Electric Hybrid Car
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032009
.
8.
Ehsani
,
M.
,
Gao
,
Y.
, and
Emadi
,
A.
,
2010
,
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals, Theory, and Design
,
CRC Press
,
Boca Raton, FL
, pp.
19
25
.
9.
Ding
,
H.
,
He
,
R.
, and
Deng
,
X.
,
2018
, “
Modeling and Analysis of Onboard Refueling Vapor Evaporative Emission for Hybrid Electric Vehicle
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012002
.
10.
Malikopoulos
,
A. A.
,
2013
, “
Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041201
.
11.
Varnhagen
,
S.
,
Same
,
A.
,
Remillard
,
J.
, and
Park
,
J. W.
,
2011
, “
A Numerical Investigation on the Efficiency of Range Extending Systems Using Advanced Vehicle Simulator
,”
J. Power Sources
,
196
(
6
), pp.
3360
3370
.
12.
Song
,
Z.
,
Zhang
,
X.
,
Li
,
J.
,
Hofmann
,
H.
,
Ouyang
,
M.
, and
Du
,
J.
,
2018
, “
Component Sizing Optimization of Plug-In Hybrid Electric Vehicles With the Hybrid Energy Storage System
,”
Energy
,
144
, pp.
393
403
.
13.
Karaoğlan
,
M. U.
,
Kuralay
,
N. S.
, and
Colpan
,
C. O.
,
2019
, “
The Effect of Gear Ratıos on the Exhaust Emıssıons and Fuel Consumptıon of a Parallel Hybrid Vehicle Powertrain
,”
J. Cleaner Prod.
,
210
, pp.
1033
1041
.
14.
Wang
,
E.
,
Guo
,
D.
, and
Yang
,
F.
,
2015
, “
System Design and Energetic Characterization of a Four-Wheel-Driven Series–Parallel Hybrid Electric Powertrain for Heavy-Duty Applications
,”
Energy Convers. Manage.
,
106
, pp.
1264
1275
.
15.
Zeng
,
X.
,
Qian
,
Q.
,
Chen
,
H.
,
Song
,
D.
, and
Li
,
G.
,
2021
, “
A Unified Quantitative Analysis of Fuel Economy for Hybrid Electric Vehicles Based on Energy Flow
,”
J. Cleaner Prod.
,
292
, p.
126040
.
16.
Millo
,
F.
,
Cubito
,
C.
,
Rolando
,
L.
,
Pautasso
,
E.
, and
Servetto
,
E.
,
2017
, “
Design and Development of an Hybrid Light Commercial Vehicle
,”
Energy
,
136
, pp.
90
99
.
17.
Du
,
J.
,
Chen
,
J.
,
Song
,
Z.
,
Gao
,
M.
, and
Ouyang
,
M.
,
2017
, “
Design Method of a Power Management Strategy for Variable Battery Capacities Range-Extended Electric Vehicles to Improve Energy Efficiency and Cost-Effectiveness
,”
Energy
,
121
, pp.
32
42
.
18.
De Robbio
,
R.
,
Cameretti
,
M. C.
, and
Mancaruso
,
E.
,
2022
, “
Investigation by Modelling of a Plug-in Hybrid Electric Commercial Vehicle With Diesel Engine on WLTC
,”
Fuel
,
317
, p.
123519
.
19.
Wang
,
Y.
,
Wang
,
X.
,
Sun
,
Y.
, and
You
,
S.
,
2018
, “
Model Predictive Control Strategy for Energy Optimization of Series-Parallel Hybrid Electric Vehicle
,”
J. Cleaner Prod.
,
199
, pp.
348
358
.
20.
Al-Samari
,
A.
,
2017
, “
Study of Emissions and Fuel Economy for Parallel Hybrid Versus Conventional Vehicles on Real World and Standard Driving Cycles
,”
Alexandria Eng. J.
,
56
(
4
), pp.
721
726
.
21.
Gao
,
B.
,
Meng
,
D.
,
Shi
,
W.
,
Cai
,
W.
,
Dong
,
S.
,
Zhang
,
Y.
, and
Chen
,
H.
,
2022
, “
Topology Optimization and the Evolution Trends of Two-Speed Transmission of EVs
,”
Renewable Sustainable Energy Rev.
,
161
, p.
112390
.
22.
Kobayashi
,
I.
,
Ogawa
,
K.
,
Uchino
,
D.
,
Ikeda
,
K.
,
Kato
,
T.
,
Endo
,
A.
,
Narita
,
T.
, and
Kato
,
H.
,
2022
, “
Investigation of Gear Ratios for Hybrid System in Small Race Car Using Lap Time Simulation
,”
IFAC PapersOnLine
,
55
(
27
), pp.
442
447
.
23.
Dong
,
P.
,
Zhao
,
J.
,
Xu
,
X.
,
Liu
,
Y.
,
Wang
,
S.
,
Huang
,
H.
,
Wang
,
R.
,
Zheng
,
L.
, and
Zhou
,
Z.
,
2022
, “
Performance Comparison of Series–Parallel Hybrid Transmissions With Multiple Gears and Modes Based on Efficiency Model
,”
Energy Convers. Manage.
,
274
, p.
116442
.
24.
Xu
,
X.
,
Zhao
,
J.
,
Zhao
,
J.
,
Shi
,
K.
,
Dong
,
P.
,
Wang
,
S.
,
Liu
,
Y.
,
Guo
,
W.
, and
Liu
,
X.
,
2022
, “
Comparative Study on Fuel Saving Potential of Series-Parallel Hybrid Transmission and Series Hybrid Transmission
,”
Energy Convers. Manage.
,
252
, p.
114970
.
25.
Yu
,
X.
,
Lin
,
C.
,
Zhao
,
M.
,
Yi
,
J.
,
Su
,
Y.
, and
Liu
,
H.
,
2022
, “
Optimal Energy Management Strategy of a Novel Hybrid Dual-Motor Transmission System for Electric Vehicles
,”
Appl. Energy
,
321
, p.
119395
.
26.
Wu
,
W.
,
Luo
,
J.
,
Zou
,
T.
,
Liu
,
Y.
,
Yuan
,
S.
, and
Xiao
,
B.
,
2022
, “
Systematic Design and Power Management of a Novel Parallel Hybrid Electric Powertrain for Heavy-Duty Vehicles
,”
Energy
,
253
, p.
124165
.
27.
Li
,
X.
,
Chen
,
B.
, and
Evangelou
,
S. A.
,
2020
, “
Optimized Design of Multi-Speed Transmissions for Parallel Hybrid Electric Vehicles
,”
IFAC PapersOnLine
,
53
(
2
), pp.
14147
14153
.
28.
Aroua
,
A.
,
Lhomme
,
W.
,
Redondo-Iglesias
,
E.
, and
Verbelen
,
F.
,
2022
, “
Fuel Saving Potential of a Long Haul Heavy Duty Vehicle Equipped With an Electrical Variable Transmission
,”
Appl. Energy
,
307
, p.
118264
.
29.
Benajes
,
J.
,
Garcia
,
A.
,
Monsalve-Serrano
,
J.
, and
Martinez-Boggio
,
S.
,
2019
, “
Optimization of the Parallel and Mild Hybrid Vehicle Platforms Operating Under Conventional and Advanced Combustion Modes
,”
Energy Convers. Manage.
,
190
, pp.
73
90
.
30.
Lujan
,
J. M.
,
Garcia
,
A.
,
Monsalve-Serrano
,
J.
, and
Martinez-Boggio
,
S.
,
2019
, “
Effectiveness of Hybrid Powertrains to Reduce the Fuel Consumption and NOx Emissions of a Euro 6d-Temp Diesel Engine Under Real-Life Driving Conditions
,”
Energy Convers. Manage.
,
199
, p.
111987
.
31.
Markel
,
T.
,
Brooker
,
A.
,
Hendricks
,
T.
,
Johnson
,
V.
,
Kelly
,
K.
,
Kramer
,
B.
,
O’Keefe
,
M.
,
Sprik
,
S.
, and
Wipke
,
K.
,
2002
, “
ADVISOR: A Systems Analysis Tool for Advanced Vehicle Modeling
,”
J. Power Sources
,
110
(
2
), pp.
225
266
.
32.
Wipke
,
K.
,
Cuddy
,
M.
,
Bharathan
,
D.
,
Burch
,
S.
,
Johnson
,
V.
,
Markel
,
T.
, and
Sprik
,
S.
,
1998
,
ADVISOR 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis
,”
Proceedings of the North American EV & Infrastructure Conference and Exposition (NAEVI 98)
,
Phoenix, AZ
,
Dec. 3–4
.
33.
Mashadi
,
B.
, and
Crolla
,
D.
,
2012
,
Vehicle Powertrain Systems
,
John Wiley & Sons Ltd
,
West Sussex, United Kingdom
.
34.
Emission Test Cycles
.
2022
ECE 15 + EUDC/NEDC
, https://dieselnet.com/standards/cycles/ece_eudc.php, Accessed July 19, 2022.
35.
Emission Test Cycles
.
2022
FTP-72 (UDDS)
, https://dieselnet.com/standards/cycles/ftp72.php, Accessed July 19, 2022.
36.
Dinç
,
C.
,
Soruşbay
,
C.
,
Ergeneman
,
M.
, and
Göktan
,
A. G.
,
2012
, “
Development of a Driving Cycle for The Estimation of Vehicle Emissions
,”
Proceedings of the 6th Automotive Technologies Congress, Conference Proceedings
.
Bursa, Türkiye
,
June 4–5
.
You do not currently have access to this content.