Abstract

A comprehensive understanding of the effects of free radicals on the ignition properties of practical fuel is critical for the performance of hypersonic vehicles. In this study, the free radical effects of H, CH3, and C2H5 on the ignition delay times of methane/air mixtures at dosages of 10−7–10−2 (mole fraction) were systemically analyzed via kinetic analysis with two detailed mechanisms (i.e., AramcoMech 2.0 and USC MECH II). Results showed that the addition of free radicals mainly promoted the ignition process at low temperature (800 K), while the addition of molecule H2 mainly improved the ignition process at high temperature (1250 K). When the additional fractions of free radicals were less than 10−3, promoting effects of the three kinds of free radicals were the same. Differences appeared only when the contents were higher than 10−2. Further kinetic analyses indicated that the addition of free radicals could change the critical reactions during the ignition process of methane/air mixtures. The ignition delay times were reduced by increasing the generation rate of OH radical and heat release rate with the addition of free radicals, while the overall output of OH and flame temperature were not affected by the free radicals.

References

1.
Edwards
,
T. I. M.
,
2006
, “
Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels
,”
Combust. Sci. Technol.
,
178
(
1–3
), pp.
307
334
.
2.
Li
,
Y.
,
Chen
,
Y.
,
Xie
,
G.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer and Secondary Flow Characteristics in a Horizontally Round Pipe for Cooling a Scramjet Combustor by Supercritical n-Decane
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022105
.
3.
Gascoin
,
N.
,
Abraham
,
G.
, and
Gillard
,
P.
,
2010
, “
Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications
,”
J. Anal. Appl. Pyrol.
,
89
(
2
), pp.
294
306
.
4.
Guo
,
B.
,
Wang
,
Y.
,
Wang
,
L.
,
Zhang
,
X.
, and
Liu
,
G.
,
2016
, “
Thermal Decomposition and Kinetics of a High-Energy-Density Hydrocarbon Fuel: Tetrahydrotricyclopentadiene (THTCPD)
,”
Energy Fuel
,
30
(
1
), pp.
230
238
.
5.
Jiang
,
R.
,
Liu
,
G.
, and
Zhang
,
X.
,
2013
, “
Thermal Cracking of Hydrocarbon Aviation Fuels in Regenerative Cooling Microchannels
,”
Energy Fuel
,
27
(
5
), pp.
2563
2577
.
6.
Li
,
Y.
,
Jin
,
B.
,
Zhang
,
X.
, and
Liu
,
G.
,
2021
, “
Pyrolysis and Heat Sink of an Endothermic Hydrocarbon Fuel EHF-851
,”
J. Anal. Appl. Pyrol.
,
155
, p.
105084
.
7.
Zhong
,
B.-J.
, and
Peng
,
H.-S.
,
2019
, “
Experimental and Kinetic Investigations of the Effect of H2/CH4/C2H4 Addition on the Burning Properties of Practical Jet Fuel
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1673
1681
.
8.
Zhang
,
D.
,
Liu
,
J.
, and
Hou
,
L.
,
2022
, “
Experimental Investigations of Laminar and Turbulent Burning Velocities of Thermally Cracked Hydrocarbon Fuels
,”
Combust. Flame
,
245
, p.
112331
.
9.
Zheng
,
D.
, and
Xiong
,
P.-f.
,
2021
, “
Experimental Investigation of the Effect of Ozone on Auto-Ignition Behaviors of Pyrolysis Gas of Kerosene
,”
Fuel
,
304
, p.
121474
.
10.
Wang
,
Z. H.
,
Yang
,
L.
,
Li
,
B.
,
Li
,
Z. S.
,
Sun
,
Z. W.
,
Aldén
,
M.
,
Cen
,
K. F.
, and
Konnov
,
A. A.
,
2012
, “
Investigation of Combustion Enhancement by Ozone Additive in CH4/Air Flames Using Direct Laminar Burning Velocity Measurements and Kinetic Simulations
,”
Combust. Flame
,
159
(
1
), pp.
120
129
.
11.
Gao
,
X.
,
Zhang
,
Y.
,
Adusumilli
,
S.
,
Seitzman
,
J.
,
Sun
,
W.
,
Ombrello
,
T.
, and
Carter
,
C.
,
2015
, “
The Effect of Ozone Addition on Laminar Flame Speed
,”
Combust. Flame
,
162
(
10
), pp.
3914
3924
.
12.
Ombrello
,
T.
,
Won
,
S. H.
,
Ju
,
Y.
, and
Williams
,
S.
,
2010
, “
Flame Propagation Enhancement by Plasma Excitation of Oxygen. Part I: Effects of O3
,”
Combust. Flame
,
157
(
10
), pp.
1906
1915
.
13.
Keum
,
S.
, and
Kuo
,
T.-W.
,
2019
, “
Damköhler Number Analysis on the Effect of Ozone on Autoignition and Flame Propagation in Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112205
.
14.
Bateup
,
M. L.
,
2013
, “
Ethylene Augmentation of JP-8+100 in a Supersonic Combustor
,”
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
San Jose, CA
, AIAA Paper No. 2013-3700.
15.
Lata
,
D. B.
, and
Misra
,
A.
,
2011
, “
Analysis of Ignition Delay Period of a Dual Fuel Diesel Engine With Hydrogen and LPG as Secondary Fuels
,”
Int. J. Hydrogen Energy
,
36
(
5
), pp.
3746
3756
.
16.
Saleh
,
H. E.
,
2008
, “
Effect of Variation in LPG Composition on Emissions and Performance in a Dual Fuel Diesel Engine
,”
Fuel
,
87
(
13
), pp.
3031
3039
.
17.
Verhelst
,
S.
,
Maesschalck
,
P.
,
Rombaut
,
N.
, and
Sierens
,
R.
,
2009
, “
Efficiency Comparison Between Hydrogen and Gasoline, on a Bi-Fuel Hydrogen/Gasoline Engine
,”
Int. J. Hydrogen Energy
,
34
(
5
), pp.
2504
2510
.
18.
Amador
,
G.
,
Forero
,
J. D.
,
Rincon
,
A.
,
Fontalvo
,
A.
,
Bula
,
A.
,
Padilla
,
R. V.
, and
Orozco
,
W.
,
2017
, “
Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042205
.
19.
Burke
,
U.
,
Somers
,
K. P.
,
O’Toole
,
P.
,
Zinner
,
C. M.
,
Marquet
,
N.
,
Bourque
,
G.
,
Petersen
,
E. L.
,
Metcalfe
,
W. K.
,
Serinyel
,
Z.
, and
Curran
,
H. J.
,
2015
, “
An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures
,”
Combust. Flame
,
162
(
2
), pp.
315
330
.
20.
Gore
,
M.
,
Nonavinakere Vinod
,
K.
, and
Fang
,
T.
,
2023
, “
Experimental Investigation of Gaseous Mixtures of Ethane, Methane, and Carbon Dioxide as an Alternative to Conventional Fuel in Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032301
.
21.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.
22.
Nagaraja
,
S. S.
,
Sahu
,
A. B.
,
Panigrahy
,
S.
, and
Curran
,
H. J.
,
2021
, “
A Fundamental Study on the Pyrolysis of Hydrocarbons
,”
Combust. Flame
,
233
, p.
111579
.
23.
Zhu
,
Y.
,
Peng
,
W.
,
Xu
,
R.
, and
Jiang
,
P.
,
2018
, “
Review on Active Thermal Protection and Its Heat Transfer for Airbreathing Hypersonic Vehicles
,”
Chin. J. Aeronaut.
,
31
(
10
), pp.
1929
1953
.
24.
Mousavi
,
S. M.
,
Kamali
,
R.
,
Sotoudeh
,
F.
,
Karimi
,
N.
, and
Lee
,
B. J.
,
2021
, “
Numerical Investigation of the Plasma-Assisted MILD Combustion of a CH4/H2 Fuel Blend Under Various Working Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
022105
.
25.
Peng
,
H.-S.
, and
Zhong
,
B.-J.
,
2022
, “
Methodology Study on a Unified Surrogate Model for the Complex Pyrolysis Products of Endothermic Hydrocarbon Fuel
,”
Fuel
,
329
, p.
125547
.
26.
Zhang
,
D.
,
Hou
,
L.
,
Liu
,
J.
, and
Gao
,
M.
,
2021
, “
Surrogate Models of Thermally Cracked Hydrocarbon Fuels at Typical Pyrolysis Temperatures
,”
Fuel
,
293
, p.
120393
.
27.
Lu
,
T.
, and
Law
,
C. K.
,
2009
, “
Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations
,”
Prog. Energy Combust.
,
35
(
2
), pp.
192
215
.
28.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1 − C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.
29.
Hai Wang
,
X. Y.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds
,” http://ignis.usc.edu/USC_Mech_II.htm, Accessed November 12, 2022.
30.
Bugler
,
J.
,
Marks
,
B.
,
Mathieu
,
O.
,
Archuleta
,
R.
,
Camou
,
A.
,
Grégoire
,
C.
,
Heufer
,
K. A.
,
Petersen
,
E. L.
, and
Curran
,
H. J.
,
2016
, “
An Ignition Delay Time and Chemical Kinetic Modeling Study of the Pentane Isomers
,”
Combust. Flame
,
163
, pp.
138
156
.
31.
Andrae
,
J. C. G.
,
2013
, “
Comprehensive Chemical Kinetic Modeling of Toluene Reference Fuels Oxidation
,”
Fuel
,
107
, pp.
740
748
.
32.
You
,
X.
,
Egolfopoulos
,
F. N.
, and
Wang
,
H.
,
2009
, “
Detailed and Simplified Kinetic Models of n-Dodecane Oxidation: The Role of Fuel Cracking in Aliphatic Hydrocarbon Combustion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
403
410
.
33.
Cheng
,
Y.
,
Hu
,
E.
,
Deng
,
F.
,
Yang
,
F.
,
Zhang
,
Y.
,
Tang
,
C.
, and
Huang
,
Z.
,
2016
, “
Experimental and Kinetic Comparative Study on Ignition Characteristics of 1-Pentene and n-Pentane
,”
Fuel
,
172
, pp.
263
272
.
34.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust.
,
20
(
5
), pp.
431
460
.
You do not currently have access to this content.