Abstract

In this paper, a new method to fabricate micromodels having homogeneous and heterogeneous porous structures is reported to gain fundamental insight into the flow through porous media. The technique of microparticle image velocimetry (PIV) is used to map the pore-scale velocity field inside the micromodels. A thin perforated metal sheet composed of uniformly distributed circular holes is used as the master pattern, and the replica of the negative of this perforated sheet is transferred to a polydimethylsiloxane (PDMS) substrate using a method similar to the soft lithography. This method allows an efficient fabrication of micromodels having different porosity by adjusting and selecting the perforated sheets of different hole sizes. The prepared micromodels were tested for its applicability and reliability by carrying out the measurements of pore-scale velocity distribution using the micro-PIV technique. The experiments with micromodels with high porosity but different grain arrangements showed qualitative as well as quantitative differences in the velocity field. The pressure drop across the two ends of micromodel is also measured. The variation of pressure difference with the flowrate is found to be nonlinear with a significant effect on the patterns of micropillars. However, at low porosity, the variation of pressure difference with the flowrate is found linear and there is almost no influence of the micropillar patterns. The flow visualization measurements are also conducted with the dual porosity micromodels, and the flow patterns were examined by analyzing the velocity vector maps.

References

1.
Philip
,
J. R.
,
1973
, “Flow in Porous Media,”
Theoretical and Applied Mechanics. IUTAM Symposia (International Union of Theoretical and Applied Mechanics)
,
E.
Becker
, and
G. K.
Mikhailov
, eds.,
Springer
,
Berlin, Heidelberg
.
2.
Cahn
,
R. P.
, and
Li
,
N. N.
,
1974
, “
Separation of Phenol From Waste Water by the Liquid Membrane Technique
,”
Sep. Sci.
,
9
(
6
), pp.
505
519
.
3.
Patil
,
V. A.
, and
Liburdy
,
J. A.
,
2012
, “
Optical Measurement Uncertainties due to Refractive Index Mismatch for Flow in Porous Media
,”
Exp. Fluids
,
53
(
5
), pp.
1453
1468
.
4.
Häfeli
,
R.
,
Altheimer
,
M.
,
Butscher
,
D.
, and
Rohr
,
P. R. V.
,
2014
, “
PIV Study of Flow Through Porous Structure Using Refractive Index Matching
,”
Exp. Fluids
,
55
(
5
).
5.
Clarke
,
A.
,
Howe
,
A. M.
,
Mitchell
,
J.
,
Staniland
,
J.
, and
Hawkes
,
L. A.
,
2016
, “
How Viscoelastic-Polymer Flooding Enhances Displacement Efficiency
,”
SPE J.
,
21
(
3
), pp.
675
687
.
6.
Zhou
,
X.
,
AlOtaibi
,
F.
,
Kokal
,
S.
,
Alhashboul
,
A.
, and
Al-Qahtani
,
J.
,
2017
, “
A New Approach of Pressure Profile and Oil Recovery During Dual and Single Carbonate Core Flooding by Seawater and CO2 Injection Process at Reservoir Conditions
,”
Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition 2017
,
Jakarta, Indonesia
,
Oct. 17–19
.
7.
Askarinezhad
,
R.
,
Hatzignatiou
,
D. G.
, and
Stavland
,
A.
,
2018
, “
Core-Based Evaluation of Associative Polymers as Enhanced Oil Recovery Agents in Oil-Wet Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032915
.
8.
Karadimitriou
,
N. K.
, and
Hassanizadeh
,
S. M.
,
2012
, “
A Review of Micromodels and Their Use in Two-Phase Flow Studies
,”
Vadose Zo. J.
,
2012
(
3
), pp.
1
11
.
9.
Chatenever
,
A.
, and
Calhoun
,
J. C.
,
1952
, “
Visual Examinations of Fluid Behavior in Porous Media—Part I
,”
J. Pet. Technol.
,
4
(
6
), pp.
149
156
.
10.
Conn
,
C. A.
,
Ma
,
K.
,
Hirasaki
,
G. J.
, and
Biswal
,
S. L.
,
2014
, “
Visualizing Oil Displacement With Foam in a Microfluidic Device With Permeability Contrast
,”
Lab Chip
,
14
(
20
), pp.
3968
3977
.
11.
Fathollahi
,
A.
,
Rostami
,
B.
, and
Khosravi
,
M.
,
2019
, “
Fluid Displacement Mechanisms by Foam Injection Within a Microfluidic Matrix-Fracture System
,”
J. Pet. Sci. Eng.
,
176
, pp.
612
620
.
12.
Tsakiroglou
,
C. D.
, and
Avraam
,
D. G.
,
2002
, “
Fabrication of a New Class of Porous Media Models for Visualization Studies of Multiphase Flow Processes
,”
J. Mater. Sci.
,
37
(
2
), pp.
353
363
.
13.
Fang
,
Y.
,
Yang
,
E.
,
Guo
,
S.
,
Cui
,
C.
, and
Zhou
,
C.
,
2022
, “
Study on Micro Remaining Oil Distribution of Polymer Flooding in Class-II B Oil Layer of Daqing Oilfield
,”
Energy
,
254
(
Part C
), p.
124479
.
14.
Bowden
,
S. A.
,
Cooper
,
J. M.
,
Greub
,
F.
,
Tambo
,
D.
, and
Hurst
,
A.
,
2010
, “
Benchmarking Methods of Enhanced Heavy Oil Recovery Using a Microscaled Bead-Pack
,”
Lab Chip
,
10
(
7
), pp.
819
823
.
15.
Sen
,
D.
,
Nobes
,
D. S.
, and
Mitra
,
S. K.
,
2011
, “
Optical Measurement of Pore Scale Velocity Field Inside Microporous Media
,”
Microfluid. Nanofluid.
,
12
(
1
4
), pp.
189
200
.
16.
Krummel
,
A. T.
,
Datta
,
S. S.
,
Münster
,
S.
, and
Weitz
,
D. A.
,
2013
, “
Visualizing Multiphase Flow and Trapped Fluid Configurations in a Model Three-Dimensional Porous Medium
,”
AIChE J.
,
59
(
3
), pp.
1022
1029
.
17.
Mohammadzadeh
,
O.
,
Sedaghat
,
M. H.
,
Kord
,
S.
,
Zendehboudi
,
S.
, and
Giesy
,
J. P.
,
2019
, “
Pore-Level Visual Analysis of Heavy Oil Recovery Using Chemical-Assisted Waterflooding Process–Use of a New Chemical Agent
,”
Fuel
,
239
, pp.
202
218
.
18.
Kianinejad
,
A.
,
Rashtchian
,
D.
,
Ghazanfari
,
M. H.
, and
Kharrat
,
R.
,
2014
, “
A Pore-Level Investigation of Surfactant-Crude Oil Displacements Behavior in Fractured Porous Media Using One-Quarter Five Spot Micromodels
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
36
(
7
), pp.
727
737
.
19.
Sedaghat
,
M. H.
,
Ghazanfari
,
M. H.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
20.
Zhong
,
H.
,
Li
,
Y.
,
Zhang
,
W.
, and
Li
,
D.
,
2019
, “
Study on Microscopic Flow Mechanism of Polymer Flooding
,”
Arab. J. Geosci.
,
12
(
2
).
21.
Lyu
,
X.
,
Liu
,
H.
,
Pang
,
Z.
, and
Sun
,
Z.
,
2018
, “
Visualized Study of Thermochemistry Assisted Steam Flooding to Improve Oil Recovery in Heavy Oil Reservoir With Glass Micromodels
,”
Fuel
,
218
, pp.
118
126
.
22.
Zhang
,
C.
,
Oostrom
,
M.
,
Grate
,
J. W.
,
Wietsma
,
T. W.
, and
Warner
,
M. G.
,
2011
, “
Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel
,”
Environ. Sci. Technol.
,
45
(
17
), pp.
7581
7588
.
23.
Zhong
,
H.
,
He
,
Y.
,
Yang
,
E.
,
Bi
,
Y.
, and
Yang
,
T.
,
2022
, “
Modeling of Microflow During Viscoelastic Polymer Flooding in Heterogenous Reservoirs of Daqing Oilfield
,”
J. Pet. Sci. Eng.
,
210
, p.
110091
.
24.
Chen
,
C.
,
Hirdes
,
D.
, and
Folch
,
A.
,
2003
, “
Gray-Scale Photolithography Using Microfluidic Photomasks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
4
), pp.
1499
1504
.
25.
Mosavat
,
N.
, and
Torabi
,
F.
,
2016
, “
Micro-Optical Analysis of Carbonated Water Injection in Irregular and Heterogeneous Pore Geometry
,”
Fuel
,
175
, pp.
191
201
.
26.
Mahdavi
,
S.
, and
James
,
L. A.
,
2019
, “
Micro and Macro Analysis of Carbonated Water Injection (CWI) in Homogeneous and Heterogeneous Porous Media
,”
Fuel
,
257
, p.
115916
.
27.
Hornbrook
,
J.
,
Castanier
,
L.
, and
Pettit
,
P. A.
,
1991
, “
Observation of Foam/Oil Interactions in a New, High-Resolution Micromodel
,”
SPE-22631-MS, Proceedings of SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct 06
, pp.
377
382
.
28.
Hsu
,
S.-Y.
,
Zhang
,
Z.-Y.
, and
Tsao
,
C.-W.
,
2017
, “
Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium
,”
Micromachines
,
8
(
2
), pp.
1
38
.
29.
Xia
,
Y.
, and
Whitesides
,
G. M.
,
1998
, “
Soft Lithography
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
153
184
.
30.
Verma
,
M. K. S.
,
Majumder
,
A.
, and
Ghatak
,
A.
,
2006
, “
Embedded Template-Assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive
,”
Langmuir
,
22
(
24
), pp.
10291
10295
.
31.
Karadimitriou
,
N. K.
,
Musterd
,
M.
,
Kleingeld
,
P. J.
,
Kreutzer
,
M. T.
,
Hassanizadeh
,
S. M.
, and
Joekar-Niasar
,
V.
,
2013
, “
On the Fabrication of PDMS Micromodels by Rapid Prototyping, and Their Use in Two-Phase Flow Studies
,”
Water Resour. Res.
,
49
(
4
), pp.
2056
2067
.
32.
Grant
,
I.
,
1997
, “
Particle Image Velocimetry: A Review
,”
Proc. Instn. Mech. Eng. C: J. Mech. Eng. Sci.
,
211
(
1
), pp.
55
76
.
33.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry A Practical Guide
,
Springer
,
Berlin, Heidelberg
.
34.
Durst
,
F.
,
Jovanovic
,
J.
, and
Sender
,
J.
,
1995
, “
LDA Measurements in the Near-Wall Region of a Turbulent Pipe Flow
,”
J. Fluid Mech.
,
295
(
1
), p.
305
.
35.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
,
1998
, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
,
25
(
4
), pp.
316
319
.
36.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
,
1999
, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
,
27
(
5
), pp.
414
419
.
37.
Devasenathipathy
,
S.
,
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
, and
Takehara
,
K.
,
2003
, “
Particle Imaging Techniques for Microfabricated Fluidic Systems
,”
Exp. Fluids
,
34
(
4
), pp.
504
514
.
38.
Adrian
,
R. J.
,
2005
, “
Twenty Years of Particle Image Velocimetry
,”
Exp. Fluids
,
39
(
2
), pp.
159
169
.
39.
Thielicke
,
W.
, and
Stamhuis
,
E. J.
,
2014
, “
PIVlab—Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Softw.
,
2
.
40.
Lindken
,
R.
,
Rossi
,
M.
,
Große
,
S.
, and
Westerweel
,
J.
,
2009
, “
Micro-Particle Image Velocimetry (µPIV): Recent Developments, Applications, and Guidelines
,”
Lab Chip
,
9
(
17
), p.
2551
.
41.
Germann
,
P.
, and
Dipietro
,
L.
,
1996
, “
When Is Porous-Media Flow Preferential? A Hydromechanical Perspective
,”
Geoderma
,
74
(
1–2
), pp.
1
21
.
42.
Brusseau
,
M.
, and
Rao
,
P.
,
1990
, “
Modeling Solute Transport in Structured Soils: A Review
,”
Geoderma
,
46
(
1–3
), pp.
169
192
.
43.
Wang
,
J. S. Y.
,
1991
, “
Flow and Transport in Fractured Rocks
,”
Rev. Geophys.
,
29
(
S1
), pp.
254
262
.
44.
Buchgraber
,
M.
,
Al-Dossary
,
M.
,
Ross
,
C.
, and
Kovscek
,
A.
,
2012
, “
Creation of a Dual-Porosity Micromodel for Pore-Level Visualization of Multiphase Flow
,”
J. Pet. Sci. Eng.
,
86–87
, pp.
27
38
.
45.
Yun
,
W.
,
Ross
,
C. M.
,
Roman
,
S.
, and
Kovscek
,
A. R.
,
2017
, “
Creation of a Dual-Porosity and Dual-Depth Micromodel for the Study of Multiphase Flow in Complex Porous Media
,”
Lab Chip
,
17
(
8
), pp.
1462
1474
.
46.
Xu
,
K.
,
Liang
,
T.
,
Zhu
,
P.
,
Qi
,
P.
,
Lu
,
J.
,
Huh
,
C.
, and
Balhoff
,
M.
,
2017
, “
A 2.5-D Glass Micromodel for Investigation of Multi-Phase Flow in Porous Media
,”
Lab Chip
,
17
(
4
), pp.
640
646
.
You do not currently have access to this content.