Abstract

This paper studies different experimental conditions for a 25t/h industrial boiler fueled with nature gas. In the meanwhile, numerical simulation is carried out using the commercial software of fluent. The different excess air coefficients of 1.05, 1.1, 1.15, 1.2, and 1.25 are studied. The different flue gas circulation rates of 5%, 10%, 15%, and 20% are studied compared with that rate of 0. The results show that the maximum temperature of the furnace and NOx emission concentration at the outlet increase first and then decrease with increasing excess air coefficient when flue gas circulation rate is 0, and the peak value of temperature and NOx emission concentration reaches 2071.93 K and 65.21 mg/m3 when excess air coefficient is 1.15, respectively. With increasing flue gas circulation rate, the average temperature of the furnace and the concentration of NOx at the outlet decreased, and the concentration of NOx decreased from 65.21 mg/m3 to 25 mg/m3. The higher the flue gas circulation, the smaller the high-temperature area of the furnace and the lower concentration of O2. However, excessively higher flue gas circulation rate and excess air coefficient can lead to incomplete combustion and lower coefficient. Hence, for optimizing the combustion conditions, the excess air coefficient and the flue gas circulation rate should be within an appropriate range.

References

1.
Chu
,
B.
,
Ma
,
Q.
,
Liu
,
J.
,
Ma
,
J.
,
Zhang
,
P.
,
Chen
,
T.
,
Feng
,
Q.
,
Wang
,
C.
,
Yang
,
N.
,
Ma
,
H.
,
Ma
,
J.
,
Russell
,
A. G.
, and
He
,
H.
,
2020
, “
Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NOx and SO2 Control
,”
Environ. Sci. Technol. Lett.
,
7
(
1
), pp.
695
700
.
2.
Qin
,
Y.
,
Edwards
,
R.
,
Tong
,
F.
, and
Mauzerall
,
D. L.
,
2017
, “
Can Switching From Coal to Shale Gas Bring Net Carbon Reductions to China?
Environ. Sci. Technol.
,
51
(
5
), pp.
2554
2562
.
3.
Zhang
,
S.
, and
Wang
,
X.
,
2020
, “
Study on a Novel District Heating System Combining Clean Coal-Fired Cogeneration With Gas Peak Shaving
,”
Energy Convers. Manage.
,
203
, pp.
1
12
.
4.
Emami
,
M. D.
,
Shahbazian
,
H.
, and
Sunden
,
B.
,
2019
, “
Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012202
.
5.
Leu
,
J. H.
,
2011
, “
3D Numerical Combustion Simulation of Designed Low Heating Value Fuel Combustor for Further Detail Modulation
,”
Adv. Mater. Res.
,
268–270
, pp.
494
500
. www.scientific.net/AMR.268-270.494
6.
Shi
,
B.
,
Hu
,
J.
,
Peng
,
H.
, and
Ishizuka
,
S.
,
2018
, “
Effects of Internal Flue Gas Recirculation Rate on the NO Emission in a Methane/Air Premixed Flame
,”
Combust. Flame
,
188
, pp.
199
211
.
7.
Cai
,
Q.
,
2017
,
Experimental Research on the Influence of the α on Boiler Heat Loss
,
Crc Press-Taylor & Francis Group
,
Boca Raton, FL
.
8.
Wei
,
X.
,
Xu
,
T.
, and
Hui
,
S.
,
2004
, “
Burning Low Volatile Fuel in Tangentially Fired Furnaces With Fuel Rich/Lean Burners
,”
Energy Convers. Manage.
,
45
(
5
), pp.
725
735
.
9.
Wang
,
J.
,
Fan
,
W.
,
Li
,
Y.
,
Xiao
,
M.
,
Wang
,
K.
, and
Ren
,
P.
,
2012
, “
The Effect of Air Staged Combustion on NOx Emissions in Dried Lignite Combustion
,”
Energy
,
37
(
1
), pp.
725
736
.
10.
Cimino
,
S.
,
Allouis
,
C.
,
Mancino
,
G.
, and
Nigro
,
R.
,
2014
, “
Hybrid Catalytic Combustion of Methane/Hydrogen Mixtures
,”
Combust. Sci. Technol.
,
186
(
4–5
), pp.
552
562
.
11.
Abuelnuor
,
A. A. A.
,
Wahid
,
M. A.
,
Saat
,
A.
,
Sies
,
M. M.
,
Elbasheer
,
M. K.
,
Hosseini
,
S. E.
,
Dairobi
,
A. G.
,
Mohammed
,
H. A.
, and
Darus
,
A.N.
,
2013
, “
Review of Numerical Studies on NOx Emission in the Flameless Combustion
,”
Appl. Mech. Mater.
,
388
, pp.
235
240
. www.scientific.net/AMM.388.235
12.
Park
,
M.
,
Shim
,
S. H.
,
Jeong
,
S. H.
,
Oh
,
K.-J.
, and
Lee
,
S.-S.
,
2017
, “
Nitrogen Oxides Emissions From the MILD Combustion With the Conditions of Recirculation Gas
,”
J. Air Waste Manage. Assoc.
,
67
(
4
), pp.
402
411
.
13.
Kwon
,
M.
, and
Nguyen
,
B. H.
,
2018
, “
Numerical Investigation of Buoyancy and Thermal Radiation Effects on a Mid-/Large-Sized Low NOx Combustion System With Flue-Gas Internal Recirculation
,”
Adv. Mech. Eng.
,
10
(
4
), pp.
1
17
.
14.
Varga
,
A.
, and
Kizek
,
J.
,
2004
, “
Influence of Flue Gas Recirculation of NOx and CO Formation
,”
Strojarstvo
,
46
(
1–3
), pp.
51
55
.
You do not currently have access to this content.