Abstract

Radio frequency (RF) heating is a novel thermal stimulation method in developing coalbed methane (CBM). Various research has been conducted on the effect of electromagnetic (EM) heating on the physical properties of coal. However, few studies considered the working conditions of underground coal seam heating. This paper calculates the coal seam temperature distribution based on the coupling between electromagnetic wave propagation and heat transfer in a vertical well to study the influence of coal seam metamorphism and thermoelectric characteristics on temperature distribution. The reservoir thermophysical parameters related to temperature are considered in the heat transfer and wave equations, respectively. Numerical simulations reveal the influence of coal ranks and thermo-electrical properties on heating efficacy. Results indicate that the temperature in the vicinity of the RF heater is relatively high, and the whole heated zone forms an elliptical shape. Low-metamorphism coal, such as lignite, is more functional for RF heating and has a broad heating range, leading to a uniform diffusion coefficient enhancement and good thermal homogeneity. Higher thermal conductivity, lower specific heat capacity, and water saturation can expand the heating area and reduce the temperature near the borehole, benefiting the maintenance of wellbore integrity. The coal seam relative permittivity has little effect on the reservoir temperature when its value is between 2.4 and 6.4.

References

1.
Liu
,
J.
,
Chen
,
Z.
,
Elsworth
,
D.
,
Qu
,
H.
, and
Chen
,
D.
,
2011
, “
Interactions of Multiple Processes During CBM Extraction: A Critical Review
,”
Int. J. Coal Geol.
,
87
(
3–4
), pp.
175
189
.
2.
Teng
,
T.
,
Wang
,
J. G.
,
Gao
,
F.
, and
Ju
,
Y.
,
2016
, “
Complex Thermal Coal-Gas Interactions in Heat Injection Enhanced CBM Recovery
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1174
1190
.
3.
Wang
,
S. M.
,
Shi
,
Q. M.
,
Wang
,
S. Q.
,
Shen
,
Y. J.
,
Shun
,
Q.
, and
Cai
,
Y.
,
2021
, “
Resource Property and Exploitation Concepts With Green and Low-Carbon of Tar-Rich Coal as Coal-Based Oil and Gas
,”
J. China Coal Soc.
,
46
(
5
), pp.
1365
1377
.
4.
Zhang
,
Y.
,
Zhao
,
W.
,
Li
,
B.
, and
Xie
,
G.
,
2018
, “
Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production: A Review of the Operation Parameters
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040802
.
5.
Wang
,
Z.
,
Gao
,
F.
,
Cai
,
C.
,
Su
,
S.
, and
Du
,
M.
,
2022
, “
Study on Coal Seam Damage Caused by Liquid Nitrogen Under Different Ground Temperature Conditions
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072302
.
6.
Bera
,
A.
, and
Babadagli
,
T.
,
2015
, “
Status of Electromagnetic Heating for Enhanced Heavy oil/Bitumen Recovery and Future Prospects: A Review
,”
Appl. Energy
,
151
, pp.
206
226
.
7.
Hong
,
Y.
,
Lin
,
B.
,
Li
,
H.
,
Dai
,
H.
,
Zhu
,
C.
, and
Yao
,
H.
,
2016
, “
Three-Dimensional Simulation of Microwave Heating Coal Sample With Varying Parameters
,”
Appl. Therm. Eng.
,
93
, pp.
1145
1154
.
8.
Lan
,
W.
,
Wang
,
H.
,
Liu
,
Q.
,
Zhang
,
X.
,
Chen
,
J.
,
Li
,
Z.
,
Feng
,
K.
, and
Chen
,
S.
,
2021
, “
Investigation on the Microwave Heating Technology for Coalbed Methane Recovery
,”
Energy
,
237
, p.
121450
.
9.
Brandt
,
A. R.
,
2008
, “
Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell In Situ Conversion Process
,”
Environ. Sci. Technol.
,
42
(
19
), pp.
7489
7495
.
10.
Meijssen
,
T.
,
Emmen
,
J.
, and
Fowler
,
T.
,
2014
, “
In-Situ Oil Shale Development in Jordan Through ICP Technology
,”
Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, UAE
,
Nov. 11
.
11.
Fowler
,
T. D.
, and
Vinegar
,
H. J.
,
2009
, “
Oil Shale ICP-Colorado Field Pilots
,”
SPE Western Regional Meeting
,
San Jose, CA
,
Mar. 24–26
.
12.
Olayinka. I
,
Ogunsola
,
Arthur M.
,
Hartstein
, and
Olubunmi
,
Ogunsola
,
2010
, “Shell's In Situ Conversion Processâ From Laboratory to Field Pilots,”
Oil Shale: A Solution to the Liquid Fuel Dilemma
, Vol.
1032
,
American Chemical Society
,
Washington, DC
, pp.
161
183
.
13.
Lin
,
B.
,
Li
,
H.
,
Chen
,
Z.
,
Zheng
,
C.
,
Hong
,
Y.
, and
Wang
,
Z.
,
2017
, “
Sensitivity Analysis on the Microwave Heating of Coal: A Coupled Electromagnetic and Heat Transfer Model
,”
Appl. Therm. Eng.
,
126
, pp.
949
962
.
14.
Li
,
H.
,
Lin
,
B.
,
Yang
,
W.
,
Hong
,
Y.
, and
Wang
,
Z.
,
2017
, “
A Fully Coupled Electromagnetic-Thermal-Mechanical Model for Coalbed Methane Extraction With Microwave Heating
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
830
844
.
15.
Wang
,
Z.
, and
Wang
,
X.
,
2021
, “
Promotion Effects of Microwave Heating on Coalbed Methane Desorption Compared With Conductive Heating
,”
Sci. Rep.
,
11
(
1
), pp.
1
16
.
16.
Wang
,
H.
,
Merry
,
H.
,
Amorer
,
G.
, and
Kong
,
B.
,
2015
, “
Enhance Hydraulic Fractured Coalbed Methane Recovery by Thermal Stimulation
,”
SPE/CSUR Unconventional Resources Conference
,
Calgary, Alberta, Canada
,
Oct. 20
.
17.
Shahtalebi
,
A.
,
Khan
,
C.
,
Dmyterko
,
A.
,
Shukla
,
P.
, and
Rudolph
,
V.
,
2016
, “
Investigation of Thermal Stimulation of Coal Seam Gas Fields for Accelerated Gas Recovery
,”
Fuel
,
180
, pp.
301
313
.
18.
Cao
,
Y.
,
Chen
,
W.
,
Yuan
,
Y.
,
Wang
,
T.
,
Sun
,
J.
, and
Cai
,
Y.
,
2020
, “
Experimental Study of Coalbed Methane Thermal Recovery
,”
Energy Sci. Eng.
,
8
(
5
), pp.
1857
1867
.
19.
Xu
,
Q.
,
Yang
,
S.
,
Tang
,
Z.
,
Hu
,
X.
,
Song
,
W.
,
Cai
,
J.
, and
Zhou
,
B.
,
2020
, “
Optimum Oxidation Temperature of Coal Bed for Methane Desorption in the Process of CBM Extraction
,”
Fuel
,
262
, p.
116625
.
20.
Wang
,
Z.
,
Gao
,
D.
,
Diao
,
B.
, and
Zhang
,
W.
,
2020
, “
The Influence of Casing Properties on Performance of Radio Frequency Heating for Oil Sands Recovery
,”
Appl. Energy
,
261
, p.
114453
.
21.
Balanis
,
C. A.
,
2015
,
Antenna Theory: Analysis and Design
,
John Wiley & Sons
,
Hoboken, NJ
.
22.
Hippel
,
A. R.
,
1966
,
Dielectrics and Waves
,
MIT Press
,
Cambridge
.
23.
Wang
,
Y.
,
Yang
,
X. Q.
, and
Zhao
,
J. S.
,
2008
,
Basic Course of Electromagnetic Fields and Electromagnetic Waves
,
Higher Education Press
,
Beijing
.
24.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
25.
Do
,
D. D.
,
1998
,
Adsorption Analysis: Equilibria and Kinetics (With cd Containing Computer MATLAB Programs)
,
World Scientific
,
Singapore
.
26.
Li
,
H.
,
Shi
,
S.
,
Lu
,
J.
,
Ye
,
Q.
,
Lu
,
Y.
, and
Zhu
,
X.
,
2019
, “
Pore Structure and Multifractal Analysis of Coal Subjected to Microwave Heating
,”
Powder Technol.
,
346
, pp.
97
108
.
27.
Deng
,
J.
,
Ren
,
S. J.
,
Xiao
,
Y.
,
Li
,
Q. W.
, and
Shu
,
C. M.
,
2018
, “
Thermal Properties of Coals With Different Metamorphic Levels in Air Atmosphere
,”
Appl. Therm. Eng.
,
143
, pp.
542
549
.
28.
Wang
,
Z.
,
Gao
,
D.
, and
Fang
,
J.
,
2018
, “
Numerical Simulation of RF Heating Heavy Oil Reservoir Based on the Coupling Between Electromagnetic and Temperature Field
,”
Fuel
,
220
, pp.
14
24
.
29.
Zheng
,
X.
,
Wang
,
B.
,
Guo
,
J.
,
Zhang
,
D.
, and
Zhao
,
J.
,
2019
, “
Factors Influencing Dielectric Properties of Coal of Different Ranks
,”
Fuel
,
258
, p.
116181
.
30.
Wen
,
H.
,
Lu
,
J. H.
,
Xiao
,
Y.
, and
Deng
,
J.
,
2015
, “
Temperature Dependence of Thermal Conductivity, Diffusion and Specific Heat Capacity for Coal and Rocks From Coalfield
,”
Thermochim. Acta
,
619
, pp.
41
47
.
31.
Chen
,
L.
,
Song
,
P.
,
Long
,
W.
,
Feng
,
L.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2017
, “
Experimental Study of Operation Stability of a Spark Ignition Engine Fueled With Coal Bed Gas
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
044501
.
32.
Ramazanova
,
A. E.
,
Abdulagatov
,
I. M.
, and
Ranjith
,
P. G.
,
2018
, “
Temperature Effect on the Thermal Conductivity of Black Coal
,”
J. Chem. Eng. Data
,
63
(
5
), pp.
1534
1545
.
33.
Du
,
M.
,
Gao
,
F.
,
Cai
,
C.
,
Su
,
S.
, and
Wang
,
Z.
,
2022
, “
Differences in Petrophysical and Mechanical Properties Between Low- and Middle-Rank Coal Subjected to Liquid Nitrogen Cooling in Coalbed Methane Mining
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042303
.
34.
Hanford
,
W. E.
, and
Joyce
,
R. M.
,
1946
, “
Polytetrafluoroethylene
,”
J. Am. Chem. Soc.
,
68
(
10
), pp.
2082
2085
.
35.
Sathishkumar
,
T. P.
,
Satheeshkumar
,
S.
, and
Naveen
,
J.
,
2014
, “
Glass Fiber-Reinforced Polymer Composites–A Review
,”
J. Reinf. Plast. Compos.
,
33
(
13
), pp.
1258
1275
.
You do not currently have access to this content.