The present study is concerned with liquid tank sloshing at low filling level conditions. The volume of fluid method implemented in a Navier–Stokes computational fluid dynamics code is employed to handle the free-surface flow of liquid sloshing. The geometric reconstruction scheme for the interface representation is employed to ensure sharpness at the free surface. The governing equations are discretized by second order accurate schemes on unstructured grids. Several different computational approaches are verified and numerical uncertainties are assessed. The computational results are validated against existing experimental data, showing good agreement. The capability is demonstrated for a generic membrane-type liquefied natural gas carrier tank with a simplified pump tower inside. The validation results suggest that the present computational approach is both easy to apply and accurate enough for more realistic problems.

1.
Abramson
,
H. N.
,
Bass
,
R. L.
,
Faltinsen
,
O.
, and
Olsen
,
H. A.
, 1974, “
Liquid Slosh in LNG Carriers
,”
Proc. Tenth Symp. on Naval Hydrodynamics
,
Cambridge
, MA, pp.
371
388
.
2.
Abramson
,
H. N.
, 1966, “
The Dynamic Behavior of Liquids in Moving Containers
,” NASA SP-106.
3.
Faltinsen
,
O. M.
, 1974, “
A Nonlinear Theory of Sloshing in Rectangular Tanks
,”
J. Ship Res.
0022-4502,
18
(
4
), pp.
224
241
.
4.
Cariou
,
A.
, and
Casella
,
G.
, 1999, “
Liquid Sloshing in Ship Tanks: A Comparative Study of Numerical Simulation
,”
Mar. Struct.
0951-8339,
12
, pp.
183
198
.
5.
Nakayama
,
T.
, 1990, “
A Computational Method for Simulating Transient Motions of an Incompressible Inviscid Fluid with a Free Surface
,”
Int. J. Numer. Methods Fluids
0271-2091,
10
, pp.
683
695
.
6.
Liu
,
Z.
, and
Huang
,
Y.
, 1994, “
A New Method for Large Amplitude Sloshing Problems
,”
J. Sound Vib.
0022-460X,
175
(
2
), pp.
185
195
.
7.
Kim
,
Y.
,
Shin
,
Y.-S.
,
Lin
,
W.-M.
, and
Yue
,
D. K. P.
, 2003, “
Study on Sloshing Problem Coupled with Ship Motion in Waves
,”
Proc. Eighth Int. Conf. on Num. Ship Hydrodynamics
,
Busan
, Korea.
8.
Okamoto
,
T.
, and
Kawahara
,
M.
, 1990, “
Two-Dimensional Sloshing Analysis by Lagrangian Finite Element Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
(
5
), pp.
453
477
.
9.
Okamoto
,
T.
, and
Kawahara
,
M.
, 1997, “
3-D Sloshing Analysis by an Arbitrary Largrangian-Eulerian Finite Element Method
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
8
(
2
), pp.
129
146
.
10.
Kim
,
J. W.
,
Shin
,
Y.
, and
Bai
,
K. J.
, 2002, “
A Finite-Element Computation for the Sloshing Motion in LNG Tank
,”
Proc. 12th International Offshore and Polar Engineering Conference
,
Fukuoka
, Japan.
11.
Bridges
,
T. J.
, 1981, “
A Numerical Simulation of Large Amplitude Sloshing
,”
Proc. Third Int. Conf. on Numerical Ship Hydrodynamics
, Basin d’Essais des Carenes,
Paris
, France, pp.
IV
-4-1–VI-4-
15
.
12.
Sicilian
,
J. M.
, and
Tegart
,
J. R.
, 1989, “
Comparison of FLOW-3D Calculations with Very Large Amplitude Slosh Data
,”
Proc. ASME/JSME Pressure Vessels and Piping Conference
,
Honolulu
, HI.
13.
Kassinos
,
A. C.
, and
Prusa
,
J.
, 1990, “
A Numerical Model for 3-D Viscous Sloshing in Moving Containers
,”
Recent Advances and Applications in Computational Fluid Dynamics
,
O.
Baysal
, ed.,
ASME FED
, New York, Vol.
103
, pp.
75
86
.
14.
Armenio
,
V.
, 1997, “
An Improved MAC Method (SIMAC) for Unsteady High-Reynolds Free Surface Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
24
, pp.
185
214
.
15.
Ushijima
,
S.
, 1998, “
Three-Dimensional Arbitrary Lagrangian-Eulerian Numerical Prediction Method for Non-Linear Free Surface Oscillation
,”
Int. J. Numer. Methods Fluids
0271-2091,
26
, pp.
605
623
.
16.
Kim
,
Y.
, 2001, “
Numerical Simulation of Sloshing Flows with Impact Load
,”
Appl. Ocean. Res.
0141-1187,
23
, pp.
53
62
.
17.
Celebi
,
M. S.
, and
Akyildiz
,
H.
, 2002, “
Nonlinear Modeling of Liquid Sloshing in a Moving Rectangular Tanks
,”
Ocean Eng.
0029-8018,
29
, pp.
1527
1553
.
18.
Sames
,
A.
,
Marcouly
,
D.
, and
Schellin
,
T. E.
, 2002, “
Sloshing in Rectangular and Cylindrical Tanks
,”
J. Ship Res.
0022-4502,
46
(
3
), pp.
186
200
.
19.
Iglesias
,
A. S.
,
Pavon
,
C. L.
, and
Fraysse
,
B.
, 2003, “
SPH Simulations of Free Surface Movements of Passive Stabilizing Tanks for Fishing Vessels
,”
Proc. Eighth Int. Conf. on Num. Ship Hydrodynamics
,
Busan
, Korea.
20.
Landrini
,
M.
,
Colagrossi
,
A.
, and
Faltinsen
,
O. M.
, 2003, “
Sloshing in 2-D Flows by the SPH Method
,”
Proc. Eighth Int. Conf. on Num. Ship Hydrodynamics
,
Busan
, Korea.
21.
Tanaka
,
Y.
,
Ando
,
T.
, and
Miyamoto
,
T.
, 2000, “
Experimental Study on Sloshing Load Measured by Panel-Type Pressure Gauge
,”
Proc. 74th General Meeting of Ship Research Institute
,
Ship Research Institute
, Tokyo, Japan, pp.
137
142
.
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
, London, England.
23.
Rhee
,
S. H.
, and
Koutsavdis
,
E.
, 2005, “
Two-Dimensional Simulation of Unsteady Marine Propulsor Blade Flow Using Dynamic Meshing Techniques
,” Computers and Fluids, (in press).
24.
Rhee
,
S. H.
, and
Makarov
,
B.
, 2005, “
Validation Study for Free-Surface Wave Flows Around Surface-Piercing Cylindrical Structures
,”
Proc. 24th International Conference on Offshore Mechanics and Arctic Engineering
,
Halkidiki
, Greece.
25.
Youngs
,
D. L.
, 1982, “
Time-Dependent Multi-Material Flow with Large Fluid Distortion
,” in
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
and
M. J.
Baines
, ed.,
Academic
, New York.
26.
Muzaferija
,
S.
,
Peric
,
M.
,
Sames
,
P.
, and
Schellin
,
T.
, 1998, “
A Two-Fluid Navier-Stokes Solver to Simulate Water Entry
,”
Proc. 22nd Symposium on Naval Hydrodynamics
,
Washington
, DC, pp.
277
289
.
27.
Rhee
,
S. H.
,
Makarov
,
B.
,
Krishnan
,
H.
, and
Ivanov
,
V.
, 2004, “
Assessment of Numerical Techniques in Volume of Fluid Method for Free-Surface Wave Flows
,”
Proc. Ninth International Symposium on Practical Design of Ships and Other Floating Structures
,
Hamburg
, Germany.
28.
Rhee
,
S. H.
, and
Skinner
,
C.
, 2005, “
Unstructured Grid Based Navier-Stokes Solver for Free-Surface Flow around Surface Ships
,”
Proc. CFD Workshop Tokyo 2005
, Tokyo, Japan.
29.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
30.
Roache
,
P. J.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
123
160
.
31.
Wilson
,
R. V.
,
Stern
,
F.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
, 2001, “
Comprehensive Approach to Verification and Validation of CFD Simulations-Part 2: Application for RANS Simulation of a Cargo/Container Ship
,”
J. Fluids Eng.
0098-2202,
123
, pp.
803
810
.
You do not currently have access to this content.